In this study, we research about comb-drive micro-structure, which is a MEMS device used to measure velocities and accelerations. To ensure the accuracy and visualization of the result, we simulate the dynamics of the...In this study, we research about comb-drive micro-structure, which is a MEMS device used to measure velocities and accelerations. To ensure the accuracy and visualization of the result, we simulate the dynamics of the comb drive?using COMSOL Multiphysics, meanwhile introducing the concept of re-meshing.?We aim to find the optimal comb-drive-building material, which can provide the device with the most desirable first eigenfrequency. According to the optimization process, silver is the most suitable construction material. Afterwards, the electric responses of both the optimized device and the pre-optimized one are analyzed in frequency domain and stationary study. We conclude that the capacitance change is positively related to frequency in a linear manner, and that the optimized device has a larger increment of both displacement and capacitance per unit of frequency change than the pre-optimized one, showing that the optimization of material realizes our goal of enhancing electrical performance.展开更多
According to the characteristics of comb-drive structures, the electrical potential field is analyzed; the model based on comer capacitor is presented and solved with the capacitance characteristic formula of nonlinea...According to the characteristics of comb-drive structures, the electrical potential field is analyzed; the model based on comer capacitor is presented and solved with the capacitance characteristic formula of nonlinear capacitor. Compared with the results of finite element method simulation, the model based on comer capacitor is more accurate than the models based on infinite parallel plate capacitor and parallel plate capacitor with edge effects.展开更多
Comb-drive devises have been widely applied in many fields. However, the application of high frequency sensor, such as rocket chamber, still remains problems. In this work, a finite element code was used for the desig...Comb-drive devises have been widely applied in many fields. However, the application of high frequency sensor, such as rocket chamber, still remains problems. In this work, a finite element code was used for the design, optimization and visualization of a comb drive accelerator. In the simulation results, the post-optimization design has high performance in high frequency oscillation operating environment. The optimization is based on the ideal eigenfrequency and Nelder-Mead method. The 3-D working conditions are realized by testing and comparing the time and frequency domain of pre-optimized and optimized design whose frequency ranges from 2000 Hz to 5000 Hz. Finally, the electric potential and capacitance in comb drive are visualized, which shows the better electric signals and displacements.展开更多
This paper summarized and reviewed recent studies of micro transportation systems (MTS) in the MEMS (Micro Electro-Mechanical System) field. Micro transportation systems can be identified and classified into three cat...This paper summarized and reviewed recent studies of micro transportation systems (MTS) in the MEMS (Micro Electro-Mechanical System) field. Micro transportation systems can be identified and classified into three categories based on the contact types between the objects and the actuators (i.e. liquid-based, solid- based and air-bearing type). Their advantages and disadvantages were also analyzed and compared. The au- thors have proposed and developed three types of solid-based MTS utilizing electrostatic comb-drive actua- tors and ratchet mechanisms to drive the micro container in straight and curved paths. These MTSs have been fabricated with silicon-on-insulator (SOI)-MEMS technology and tested successfully. In the near future, MTSs can be applied in different fields such as medicine (to classify and test blood cells), in bioengineering (to capture, sort and combine bio-cells, DNA), or in micro robot systems.展开更多
文摘In this study, we research about comb-drive micro-structure, which is a MEMS device used to measure velocities and accelerations. To ensure the accuracy and visualization of the result, we simulate the dynamics of the comb drive?using COMSOL Multiphysics, meanwhile introducing the concept of re-meshing.?We aim to find the optimal comb-drive-building material, which can provide the device with the most desirable first eigenfrequency. According to the optimization process, silver is the most suitable construction material. Afterwards, the electric responses of both the optimized device and the pre-optimized one are analyzed in frequency domain and stationary study. We conclude that the capacitance change is positively related to frequency in a linear manner, and that the optimized device has a larger increment of both displacement and capacitance per unit of frequency change than the pre-optimized one, showing that the optimization of material realizes our goal of enhancing electrical performance.
基金Sponsored by the Ministerial Level Foundation(A2220060040)
文摘According to the characteristics of comb-drive structures, the electrical potential field is analyzed; the model based on comer capacitor is presented and solved with the capacitance characteristic formula of nonlinear capacitor. Compared with the results of finite element method simulation, the model based on comer capacitor is more accurate than the models based on infinite parallel plate capacitor and parallel plate capacitor with edge effects.
文摘Comb-drive devises have been widely applied in many fields. However, the application of high frequency sensor, such as rocket chamber, still remains problems. In this work, a finite element code was used for the design, optimization and visualization of a comb drive accelerator. In the simulation results, the post-optimization design has high performance in high frequency oscillation operating environment. The optimization is based on the ideal eigenfrequency and Nelder-Mead method. The 3-D working conditions are realized by testing and comparing the time and frequency domain of pre-optimized and optimized design whose frequency ranges from 2000 Hz to 5000 Hz. Finally, the electric potential and capacitance in comb drive are visualized, which shows the better electric signals and displacements.
文摘This paper summarized and reviewed recent studies of micro transportation systems (MTS) in the MEMS (Micro Electro-Mechanical System) field. Micro transportation systems can be identified and classified into three categories based on the contact types between the objects and the actuators (i.e. liquid-based, solid- based and air-bearing type). Their advantages and disadvantages were also analyzed and compared. The au- thors have proposed and developed three types of solid-based MTS utilizing electrostatic comb-drive actua- tors and ratchet mechanisms to drive the micro container in straight and curved paths. These MTSs have been fabricated with silicon-on-insulator (SOI)-MEMS technology and tested successfully. In the near future, MTSs can be applied in different fields such as medicine (to classify and test blood cells), in bioengineering (to capture, sort and combine bio-cells, DNA), or in micro robot systems.