Coupled phase oscillators are adopted as powerful platforms in studying synchrony behaviors emerged in various systems with rhythmic dynamics. Much attention has been focused on coupled time-continuous oscillators des...Coupled phase oscillators are adopted as powerful platforms in studying synchrony behaviors emerged in various systems with rhythmic dynamics. Much attention has been focused on coupled time-continuous oscillators described by differential equations. In this paper, we study the synchronization dynamics of networks of coupled circle maps as the discrete version of the Kuramoto model. Despite of its simplicity in mathematical form, it is found that discreteness may induce many interesting synchronization behaviors. Multiple synchronization and desynchronization transitions of both phases and frequencies are found with varying the coupling among circle-map oscillators. The mechanisms of these transitions are interpreted in terms of the mean-field approach, where collective bifurcation cascades are revealed for coupled circle-map oscillators.展开更多
Rodin and Sullivan (1987) proved Thurston's conjecture that a scheme based on the Circle Packing Theorem converges to the Riemann mapping, thereby proved a refreshing geometric view of the Riemann Mapping Theorem. ...Rodin and Sullivan (1987) proved Thurston's conjecture that a scheme based on the Circle Packing Theorem converges to the Riemann mapping, thereby proved a refreshing geometric view of the Riemann Mapping Theorem. Naturally, we consider to use the ellipses to pack the bounded simply connected domain and obtain similarly a sequence simplicial homeomorphism between the ellipse packing and the circle packing. In this paper, we prove that these simplicial homeomorphism approximate a quasiconformal mapping from the bounded simply connected domain onto the unit disk with the modulus of their complex dilatations tending to 1 almost everywhere in the domain when the ratio of the longer axis and shorter axis of the ellipse tending to ∞.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 11875135)。
文摘Coupled phase oscillators are adopted as powerful platforms in studying synchrony behaviors emerged in various systems with rhythmic dynamics. Much attention has been focused on coupled time-continuous oscillators described by differential equations. In this paper, we study the synchronization dynamics of networks of coupled circle maps as the discrete version of the Kuramoto model. Despite of its simplicity in mathematical form, it is found that discreteness may induce many interesting synchronization behaviors. Multiple synchronization and desynchronization transitions of both phases and frequencies are found with varying the coupling among circle-map oscillators. The mechanisms of these transitions are interpreted in terms of the mean-field approach, where collective bifurcation cascades are revealed for coupled circle-map oscillators.
基金supported by the National Natural Science Foundation of China(10701084)Chongqing Natural Science Foundation (2008BB0151)
文摘Rodin and Sullivan (1987) proved Thurston's conjecture that a scheme based on the Circle Packing Theorem converges to the Riemann mapping, thereby proved a refreshing geometric view of the Riemann Mapping Theorem. Naturally, we consider to use the ellipses to pack the bounded simply connected domain and obtain similarly a sequence simplicial homeomorphism between the ellipse packing and the circle packing. In this paper, we prove that these simplicial homeomorphism approximate a quasiconformal mapping from the bounded simply connected domain onto the unit disk with the modulus of their complex dilatations tending to 1 almost everywhere in the domain when the ratio of the longer axis and shorter axis of the ellipse tending to ∞.