As chondroitinase ABC can improve the hostile microenvironment and cell transplantation is proven to be effective after spinal cord injury, we hypothesized that their combination would be a more effective treatment op...As chondroitinase ABC can improve the hostile microenvironment and cell transplantation is proven to be effective after spinal cord injury, we hypothesized that their combination would be a more effective treatment option. At 5 days after T8 spinal cord crush injury, rats were injected with bone marrow mesenchymal stem cell suspension or chondroitinase ABC 1 mm from the edge of spinal cord damage zone. Chondroitinase ABC was first injected, and bone marrow mesenchymal stem cell suspension was injected on the next day in the combination group. At 14 days, the mean Basso, Beattie and Bresnahan score of the rats in the combination group was higher than other groups. Hematoxylin-eosin staining showed that the necrotic area was significantly reduced in the combination group compared with other groups. Glial fibrillary acidic protein-chondroitin sulfate proteoglycan double staining showed that the damage zone of astrocytic scars was significantly reduced without the cavity in the combination group. Glial fibrillary acidic protein/growth associated protein-43 double immunostaining revealed that positive fibers traversed the damage zone in the combination group. These results suggest that the combination of chondroitinase ABC and bone marrow mesenchymal stem cell transplantation contributes to the repair of spinal cord injury.展开更多
Proteoglycans in the central nervous system play integral roles as "traffic signals" for the direction of neurite outgrowth. This attribute of proteoglycans is a major factor in regeneration of the injured central n...Proteoglycans in the central nervous system play integral roles as "traffic signals" for the direction of neurite outgrowth. This attribute of proteoglycans is a major factor in regeneration of the injured central nervous system. In this review, the structures of proteoglycans and the evidence suggesting their involvement in the response following spinal cord injury are presented. The review further describes the methods routinely used to determine the effect proteoglycans have on neurite outgrowth. The effects of proteoglycans on neurite outgrowth are not completely understood as there is disagreement on what component of the molecule is interacting with growing neurites and this ambiguity is chronicled in an historical context. Finally, the most recent findings suggesting possible receptors, interactions, and sulfation patterns that may be important in eliciting the effect of proteoglycans on neurite outgrowth are discussed. A greater understanding of the proteoglycan-neurite interaction is necessary for successfully promoting regeneration in the iniured central nervous system.展开更多
创伤后的神经胶质增生导致硫酸软骨素蛋白聚糖(CSPG)的显著表达,从而抑制轴突生长和再生。甲基强地松龙(MP),一种合成的糖皮质激素,在急性脊髓损伤(SCI)的治疗中有神经保护作用和抗炎效应。但是,MP对于CSPG在活性胶质细胞中的表达的作...创伤后的神经胶质增生导致硫酸软骨素蛋白聚糖(CSPG)的显著表达,从而抑制轴突生长和再生。甲基强地松龙(MP),一种合成的糖皮质激素,在急性脊髓损伤(SCI)的治疗中有神经保护作用和抗炎效应。但是,MP对于CSPG在活性胶质细胞中的表达的作用尚不清楚。本文用a-氨基-3-羟基-5-甲基-4-异恶唑丙酸酯(AM-PA)诱导星形胶质细胞再活化,用环噻嗪模拟SCI的兴奋性中毒刺激。AMPA治疗后,星形胶质细胞再活化的标志物-胶质纤维酸性蛋白(GFAP)、CSPG神经聚糖和磷酸盐的表达都显著上调。AMPA治疗星形胶质细胞的条件培养液强烈抑制大鼠背根神经节中神经元的轴突生长,但这种作用能被MP的预处理所逆转。此外,MP下调成年SCI大鼠中GFAP和CSPG的表达,对抗RU486的糖皮质激素受体(GR)和GR si RNA能逆转MP对GFAP和神经聚糖表达的抑制作用。这些结果提示,MP能在兴奋性中毒损伤后通过GR介导的星形胶质细胞再活化下调和GSPG表达抑制来改善神经修复,促进轴突生长。展开更多
As one major component of extracellular matrix (ECM) in the central nervous system, chondroitin sul- fate proteoglycans (CSPGs) have long been known as inhibitors enriched in the glial scar that prevent axon regen...As one major component of extracellular matrix (ECM) in the central nervous system, chondroitin sul- fate proteoglycans (CSPGs) have long been known as inhibitors enriched in the glial scar that prevent axon regeneration after injury. Although many studies have shown that CSPGs inhibited neurite out- growth in vitro using different types of neurons, the mechanism by which CSPGs inhibit axonal growth remains poorly understood. Using cerebellar granule neuron (CGN) culture, in this study, we evaluated the effects of different concentrations of both immobilized and soluble CSPGs on neuronal growth, in- cluding cell adhesion, spreading and neurite growth. Neurite length decreased while CSPGs concentration arised, meanwhile, a decrease in cell density accompanied by an increase in cell aggregates formation was observed. Soluble CSPGs also showed an inhibition on neurite outgrowth, but it required a higher concen- tration to induce cell aggregates formation than coated CSPGs. We also found that growth cone size was significantly reduced on CSPGs and neuronal cell spreading was restrained by CSPGs, attributing to an inhibition on lamellipodial extension. The effect of CSPGs on neuron adhesion was further evidenced by interference reflection microscopy (IRM) which directly demonstrated that both CGNs and cerebral cortical neurons were more loosely adherent to a CSPG substrate. These data demonstrate that CSPGs have an effect on cell adhesion and spreading in addition to neurite outgrowth.展开更多
AIM: To investigate inhibitory γ-aminobutyric acid (GABA) ergic postsynaptic currents (IPSCs) and postsynaptic currents (PSCs) in layer IV of the rat visual cortex during the critical period and when plasticity was e...AIM: To investigate inhibitory γ-aminobutyric acid (GABA) ergic postsynaptic currents (IPSCs) and postsynaptic currents (PSCs) in layer IV of the rat visual cortex during the critical period and when plasticity was extended through dissolution of the perineuronal nets (PNNs). METHODS: We employed 24 normal Long-Evans rats to study GABA A-PSC characteristics of neurons within layer IV of the visual cortex during development. The animals were divided into six groups of four rats according to ages at recording: PW3 (P21 -23d), PW4 (P28 -30d), PW5 (P35-37d), PW6 (P42-44d), PW7 (P49-51d), and PW8 (56-58d). An additional 24 chondroitin sulfate proteoglycan (CSPG) degradation rats (also Long-Evans) were generated by making a pattern of injections of chondroitinase ABC (chABC) into the visual cortex 1 week prior to recording at PW3, PW4, PW5, PW6, PW7, and PW8. Immunohistochemistry was used to identify the effect of chABC injection on CSPGs. PSCs were detected with whole-cell patch recordings, and GABA A receptor-mediated IPSCs were pharmacologically isolated. RESULTS: IPSC peak current showed a strong rise in the age-matched control group, peaked at PW5 and were maintained at a roughly constant value thereafter. Although there was a small increase in peak current for the chABC group with age, the peak currents continued to decrease with the delayed highest value at PW6, resulting in significantly different week-by-week com-parison with normal development. IPSC decay time continued to increase until PW7 in the control group, while those in the chABC group were maintained at astable level after an initial increase at PW4. Compared with normal rats, the decay times recorded in the chABC rats were always shorter, which differed significantly at each age. We did not observe any differences in IPSC properties between the age-matched control and penicillinase (P-ase) group. However, the change in IPSCs after chABC treatment was not reflected in the total PSCs or in basic membrane properties in layer IV of the rat visual corte展开更多
目的研究益气活血补肾方"髓复康"对大鼠脑缺血损伤区和体外培养神经胶质瘢痕中硫酸软骨素蛋白多糖(CSPGs)表达的抑制作用。方法通过Koizumi法制作SD大鼠单侧大脑中动脉阻塞模型(MACO),将SD大鼠随机分为正常组、模型组、阳性...目的研究益气活血补肾方"髓复康"对大鼠脑缺血损伤区和体外培养神经胶质瘢痕中硫酸软骨素蛋白多糖(CSPGs)表达的抑制作用。方法通过Koizumi法制作SD大鼠单侧大脑中动脉阻塞模型(MACO),将SD大鼠随机分为正常组、模型组、阳性对照组(激素组)、髓复康大剂量组、中剂量组和小剂量组,均在8,15和30 d 3个时间点取大鼠脑组织制作病理切片,通过免疫组化染色方法检测各组脑缺血损伤区硫酸软骨素蛋白多糖表达量的差异;建立体外培养神经胶质瘢痕模型,以血清药理学的方法选择不同浓度的含药血清,使用免疫组化染色方法分别在培养12,24,48 h后定量检测神经胶质细胞硫酸软骨素蛋白多糖的表达量。结果整体动物实验和体外培养的神经胶质细胞中,中药大剂量及中剂量组神经胶质细胞的反应性增生较轻,硫酸软骨素蛋白多糖表达最弱,均与模型组形成极显著差异(P<0.01),小剂量组的硫酸软骨素蛋白多糖表达也低于模型组,与之形成显著差异(P<0.05)。结论 "髓复康"可以抑制脑缺血损伤区硫酸软骨素蛋白多糖的表达,改善脑缺血损伤区轴突再生微环境,可能是其促进脑缺血损伤后轴突再生的机制之一。展开更多
文摘As chondroitinase ABC can improve the hostile microenvironment and cell transplantation is proven to be effective after spinal cord injury, we hypothesized that their combination would be a more effective treatment option. At 5 days after T8 spinal cord crush injury, rats were injected with bone marrow mesenchymal stem cell suspension or chondroitinase ABC 1 mm from the edge of spinal cord damage zone. Chondroitinase ABC was first injected, and bone marrow mesenchymal stem cell suspension was injected on the next day in the combination group. At 14 days, the mean Basso, Beattie and Bresnahan score of the rats in the combination group was higher than other groups. Hematoxylin-eosin staining showed that the necrotic area was significantly reduced in the combination group compared with other groups. Glial fibrillary acidic protein-chondroitin sulfate proteoglycan double staining showed that the damage zone of astrocytic scars was significantly reduced without the cavity in the combination group. Glial fibrillary acidic protein/growth associated protein-43 double immunostaining revealed that positive fibers traversed the damage zone in the combination group. These results suggest that the combination of chondroitinase ABC and bone marrow mesenchymal stem cell transplantation contributes to the repair of spinal cord injury.
基金supported by the NIH(NS53470)the Kentucky Spinal Cord and Head Injury Research Trust(#10-11A)the Department of Defense,CDMRP(SC090248/W81XWH-10-1-0778)
文摘Proteoglycans in the central nervous system play integral roles as "traffic signals" for the direction of neurite outgrowth. This attribute of proteoglycans is a major factor in regeneration of the injured central nervous system. In this review, the structures of proteoglycans and the evidence suggesting their involvement in the response following spinal cord injury are presented. The review further describes the methods routinely used to determine the effect proteoglycans have on neurite outgrowth. The effects of proteoglycans on neurite outgrowth are not completely understood as there is disagreement on what component of the molecule is interacting with growing neurites and this ambiguity is chronicled in an historical context. Finally, the most recent findings suggesting possible receptors, interactions, and sulfation patterns that may be important in eliciting the effect of proteoglycans on neurite outgrowth are discussed. A greater understanding of the proteoglycan-neurite interaction is necessary for successfully promoting regeneration in the iniured central nervous system.
文摘创伤后的神经胶质增生导致硫酸软骨素蛋白聚糖(CSPG)的显著表达,从而抑制轴突生长和再生。甲基强地松龙(MP),一种合成的糖皮质激素,在急性脊髓损伤(SCI)的治疗中有神经保护作用和抗炎效应。但是,MP对于CSPG在活性胶质细胞中的表达的作用尚不清楚。本文用a-氨基-3-羟基-5-甲基-4-异恶唑丙酸酯(AM-PA)诱导星形胶质细胞再活化,用环噻嗪模拟SCI的兴奋性中毒刺激。AMPA治疗后,星形胶质细胞再活化的标志物-胶质纤维酸性蛋白(GFAP)、CSPG神经聚糖和磷酸盐的表达都显著上调。AMPA治疗星形胶质细胞的条件培养液强烈抑制大鼠背根神经节中神经元的轴突生长,但这种作用能被MP的预处理所逆转。此外,MP下调成年SCI大鼠中GFAP和CSPG的表达,对抗RU486的糖皮质激素受体(GR)和GR si RNA能逆转MP对GFAP和神经聚糖表达的抑制作用。这些结果提示,MP能在兴奋性中毒损伤后通过GR介导的星形胶质细胞再活化下调和GSPG表达抑制来改善神经修复,促进轴突生长。
基金supported by the National Natural Science Foundation of China,No.81601066the Natural Science Foundation of Guangdong Province of China,No.2017A030313103 and 2016A030313096+2 种基金a grant from the Program of Introducing Talents of Discipline to Universities,No.B14036the Fundamental Research Funds for the Central Universities,No.21616340the Division of Intramural Research of the National Heart,Lung,and Blood Institute of National Institutes of Health
文摘As one major component of extracellular matrix (ECM) in the central nervous system, chondroitin sul- fate proteoglycans (CSPGs) have long been known as inhibitors enriched in the glial scar that prevent axon regeneration after injury. Although many studies have shown that CSPGs inhibited neurite out- growth in vitro using different types of neurons, the mechanism by which CSPGs inhibit axonal growth remains poorly understood. Using cerebellar granule neuron (CGN) culture, in this study, we evaluated the effects of different concentrations of both immobilized and soluble CSPGs on neuronal growth, in- cluding cell adhesion, spreading and neurite growth. Neurite length decreased while CSPGs concentration arised, meanwhile, a decrease in cell density accompanied by an increase in cell aggregates formation was observed. Soluble CSPGs also showed an inhibition on neurite outgrowth, but it required a higher concen- tration to induce cell aggregates formation than coated CSPGs. We also found that growth cone size was significantly reduced on CSPGs and neuronal cell spreading was restrained by CSPGs, attributing to an inhibition on lamellipodial extension. The effect of CSPGs on neuron adhesion was further evidenced by interference reflection microscopy (IRM) which directly demonstrated that both CGNs and cerebral cortical neurons were more loosely adherent to a CSPG substrate. These data demonstrate that CSPGs have an effect on cell adhesion and spreading in addition to neurite outgrowth.
基金National Natural Sciences Foundation of China (No. 81070749)
文摘AIM: To investigate inhibitory γ-aminobutyric acid (GABA) ergic postsynaptic currents (IPSCs) and postsynaptic currents (PSCs) in layer IV of the rat visual cortex during the critical period and when plasticity was extended through dissolution of the perineuronal nets (PNNs). METHODS: We employed 24 normal Long-Evans rats to study GABA A-PSC characteristics of neurons within layer IV of the visual cortex during development. The animals were divided into six groups of four rats according to ages at recording: PW3 (P21 -23d), PW4 (P28 -30d), PW5 (P35-37d), PW6 (P42-44d), PW7 (P49-51d), and PW8 (56-58d). An additional 24 chondroitin sulfate proteoglycan (CSPG) degradation rats (also Long-Evans) were generated by making a pattern of injections of chondroitinase ABC (chABC) into the visual cortex 1 week prior to recording at PW3, PW4, PW5, PW6, PW7, and PW8. Immunohistochemistry was used to identify the effect of chABC injection on CSPGs. PSCs were detected with whole-cell patch recordings, and GABA A receptor-mediated IPSCs were pharmacologically isolated. RESULTS: IPSC peak current showed a strong rise in the age-matched control group, peaked at PW5 and were maintained at a roughly constant value thereafter. Although there was a small increase in peak current for the chABC group with age, the peak currents continued to decrease with the delayed highest value at PW6, resulting in significantly different week-by-week com-parison with normal development. IPSC decay time continued to increase until PW7 in the control group, while those in the chABC group were maintained at astable level after an initial increase at PW4. Compared with normal rats, the decay times recorded in the chABC rats were always shorter, which differed significantly at each age. We did not observe any differences in IPSC properties between the age-matched control and penicillinase (P-ase) group. However, the change in IPSCs after chABC treatment was not reflected in the total PSCs or in basic membrane properties in layer IV of the rat visual corte
文摘目的研究益气活血补肾方"髓复康"对大鼠脑缺血损伤区和体外培养神经胶质瘢痕中硫酸软骨素蛋白多糖(CSPGs)表达的抑制作用。方法通过Koizumi法制作SD大鼠单侧大脑中动脉阻塞模型(MACO),将SD大鼠随机分为正常组、模型组、阳性对照组(激素组)、髓复康大剂量组、中剂量组和小剂量组,均在8,15和30 d 3个时间点取大鼠脑组织制作病理切片,通过免疫组化染色方法检测各组脑缺血损伤区硫酸软骨素蛋白多糖表达量的差异;建立体外培养神经胶质瘢痕模型,以血清药理学的方法选择不同浓度的含药血清,使用免疫组化染色方法分别在培养12,24,48 h后定量检测神经胶质细胞硫酸软骨素蛋白多糖的表达量。结果整体动物实验和体外培养的神经胶质细胞中,中药大剂量及中剂量组神经胶质细胞的反应性增生较轻,硫酸软骨素蛋白多糖表达最弱,均与模型组形成极显著差异(P<0.01),小剂量组的硫酸软骨素蛋白多糖表达也低于模型组,与之形成显著差异(P<0.05)。结论 "髓复康"可以抑制脑缺血损伤区硫酸软骨素蛋白多糖的表达,改善脑缺血损伤区轴突再生微环境,可能是其促进脑缺血损伤后轴突再生的机制之一。