The 12 mm-thick Ti−6Al−4V(TC4)titanium alloy plates were welded using keyhole tungsten inert gas(K-TIG)welding at various heat inputs.The microstructure,grain boundary(GB)characteristics and mechanical properties of t...The 12 mm-thick Ti−6Al−4V(TC4)titanium alloy plates were welded using keyhole tungsten inert gas(K-TIG)welding at various heat inputs.The microstructure,grain boundary(GB)characteristics and mechanical properties of the weld metal zone(WMZ)were analyzed.The test results show that the K-TIG welds are well formed,and no obvious defects are observed when the heat input is 2.30−2.62 kJ/mm.When the heat input gradually increases,αlaths increase in length,andα′phase and residualβphase are reduced.The electron backscatter diffraction(EBSD)test results indicate that the high-angle GB proportion in the WMZ increases with the increase of heat input.The tensile strength of the WMZ gradually decreases and the elongation of the WMZ increases when the heat input increases from 2.30 to 2.62 kJ/mm.The impact toughness of the WMZ increases as the heat input increases.展开更多
Ferritic/martensitic steels with Cr of 9%-12% (in mass percent) are favourable candidates for fuel cladding tube and in-core components of supercritical water-cooled reactor. 9Cr-3WVTiTaN low activation ferritic/mar...Ferritic/martensitic steels with Cr of 9%-12% (in mass percent) are favourable candidates for fuel cladding tube and in-core components of supercritical water-cooled reactor. 9Cr-3WVTiTaN low activation ferritic/martensitic steel, designated as China Nuclear Steel- I (CNS- I ), was patterned after T91 steel (modified 9Cr-lMo) for the reactor. The idea of low activation material and microalloy technology was introduced into the design of the steel. The hardening, tempering and transformation behaviour of CNS- I steel was investigated. The steel has advantages in tensile properties at elevated temperature relative to zircaloy that has been widely used as cladding material for conventional light water reactors. CNS- I steel exhibits tensile properties and impact toughness comparable to T91 steel which exhibits availability in the present fission reactors and fast breeder reactor but includes undesired radioactive elements such as molybdenum and niobium.展开更多
The current research of Charpy impact mainly focuses on obtaining the ductile brittle transition temperature of materials by experiments.Compared with experiments,numerical simulation can study many problems with hars...The current research of Charpy impact mainly focuses on obtaining the ductile brittle transition temperature of materials by experiments.Compared with experiments,numerical simulation can study many problems with harsh conditions.However,there are still few studies on the influence of geometric factors such as side grooves.In this paper,the geometry of standard Charpy impact test is designed.Specimens with different widths and side grooves are tested.The finite element model of Charpy impact was established by ABAQUS software.Use test results and simulation results to verify each other.The effects of sample width,side groove depth and side groove bottom fillet on the impact fracture resistance of the sample were studied.The results show that the specimen width is positively correlated with the impact toughness of the specimen.The side groove greatly reduces the impact toughness of the material;the toughness of side groove decreases with the increase of depth;the fracture toughness of side groove decreases with the increase of fillet at the bottom of side groove.The proportion of toughness energy to impact energy of samples was analyzed.The results show that the toughness energy accounts for about 70%of the impact energy of the sample,which has little to do with the geometric characteristics of the sample.This study presents a reliable method for studying Charpy impact tests.The influence of geometric parameters is obtained,which provides a reference method for the study of impact toughness of high toughness materials.展开更多
Multi-pass TIG welding was conducted on plates(15×300×180 mm^(3))of aluminum alloy Al-5083 that usually serves as the component material in structural applications such as cryogenics and chemical processing ...Multi-pass TIG welding was conducted on plates(15×300×180 mm^(3))of aluminum alloy Al-5083 that usually serves as the component material in structural applications such as cryogenics and chemical processing industries.Porosity formation and solidification cracking are the most common defects when TIG welding Al-5083 alloy,which is sensitive to the welding heat input.In the experiment,the heat input was varied from 0.89 kJ/mm to 5 kJ/mm designed by the combination of welding torch travel speed and welding current.Tensile,micro-Vicker hardness and Charpy impact tests were executed to witness the impetus response of heat input on the mechanical properties of the joints.Radiographic inspection was performed to assess the joint’s quality and welding defects.The results show that all the specimens displayed inferior mechanical properties as compared to the base alloy.It was established that porosity was progressively abridged by the increase of heat input.The results also clinched that the use of medium heat input(1-2 kJ/mm)offered the best mechanical properties by eradicating welding defects,in which only about 18.26% of strength was lost.The yield strength of all the welded specimens remained unaffected indica ted no influence of heat input.Partially melted zone(PMZ)width also affected by heat input,which became widened with the increase of heat input.The grain size of PMZ was found to be coarser than the respective grain size in the fusion zone.Charpy impact testing revealed that the absorbed energy by low heat input specimen(welded at high speed)was greater than that of high heat input(welded at low speed)because of low porosity and the formation of equiaxed grains which induce better impact toughness.Cryogenic(-196℃)impact testing was also performed and the results corroborate that impact properties under the cryogenic environment revealed no appreciable change after welding at designated heat input.Finally,Macro and micro fractured surfaces of tensile and impact specimens were analyzed using Stereo and Scan展开更多
Developing bulk metallic glass composites(BMGCs)with high toughness is vital for their practical application.However,the influence of different microstructures on the impact toughness of BMGCs is still unclear.The eff...Developing bulk metallic glass composites(BMGCs)with high toughness is vital for their practical application.However,the influence of different microstructures on the impact toughness of BMGCs is still unclear.The effects of Al addition and cryogenic cyclic treatment(CCT)on the Charpy impact toughness,a K,at 298 and 77 K of a series of phase-transformable BMGCs are investigated in this work.It is found that deformation-induced martensitic transformation(DIMT)of theβ-Ti dendrites is the dominant toughening mechanism in the phase-transformable BMGCs at 298 K,but at 77 K,the toughness of BMGCs is primarily determined by the intrinsic toughness of the glass matrix.The addition of Al can moderately tune theβ-Ti phase stability,which then affects the amount of DIMT and impact toughness of the BMGCs at 298 K.However,at 77 K,Al addition causes a monotonic decrease in the toughness of the BMGCs due to the embrittlement of the glass matrix.It is found that CCT can effectively rejuvenate the phase-transformable BMGCs,which results in an enhanced impact toughness at 298 K.However,the toughness at 77 K monotonously decreases with increasing the number of CCT cycles,suggesting that the rejuvenation of the glass matrix affects the toughness at both 298 and 77 K of BMGCs,but in dramatically different ways.These findings reveal the influence of microstructures and CCT on the impact toughness of BMGCs and provide insights that could be useful for designing tougher BMGs and BMGCs.展开更多
The aramid fiber礥HMWPE (ultrahigh molecular weight polyethylene) fiber hybrid composites (AF礑F) were ma-nufactured. By Charpy impact, the low velocity impact behavior of AF礑F composite was studied. And the high vel...The aramid fiber礥HMWPE (ultrahigh molecular weight polyethylene) fiber hybrid composites (AF礑F) were ma-nufactured. By Charpy impact, the low velocity impact behavior of AF礑F composite was studied. And the high velocity impact behavior under ballistic impact was also investigated. The influence of hybrid ratio on the performances of low and high velocity impact was analyzed, and hybrid structures with good impact properties under low velocity impact and high velocity were optimized. For Charpy impact, the maximal impact load increased with the accretion of the AF layers for AF礑F hybrid composites. The total impact power was reduced with the decrease of DF layers and the delamination can result in the increase of total impact power. For ballistic impact, the DF ballistic performance was better than that of the AF and the hybrid ratio had a crucial influence. The failure morphology of AF礑F hybrid composite under Charpy impact and ballistic impact was analyzed. The AF礑F hybrid composites in suitable hybrid ratio could attain better performance than AF or DF composites.展开更多
Pipeline transportation is one of the most economical ways to transport crude oil and natural gas over long distances.High toughness is one of the important qualities of pipeline steel to ensure safe transportation,wh...Pipeline transportation is one of the most economical ways to transport crude oil and natural gas over long distances.High toughness is one of the important qualities of pipeline steel to ensure safe transportation,wherein a key factor characterizing toughness is Charpy impact toughness(CIT).In this work,according to the production line data provided by a steel mill and the experimental data collected in literature,two machine learning model construction strategies were proposed.One was based solely on the production line dataset,and the other was based on the production line dataset together with the literature dataset.In these two strategies,the random forest model displayed the best prediction results,the accuracy of strategy I was 0.58,and the accuracy of strategy II was 0.90,wherein literature data effectively improved the CIT prediction accuracy.Finally,an optimized CIT model based on machine learning algorithms was established.The proposed strategy of literature data-assisted production line data provides a new perspective for optimizing and predicting the performance of traditional structural materials.展开更多
We systematically compared the mechanical properties of CrCoNi,a recently emerged prototypical medium-entropy alloy(MEA)with face-centered-cubic(FCC)structure,with hallmark FCC alloys,in particular,the well-known aust...We systematically compared the mechanical properties of CrCoNi,a recently emerged prototypical medium-entropy alloy(MEA)with face-centered-cubic(FCC)structure,with hallmark FCC alloys,in particular,the well-known austenitic 316 L and 316 LN stainless steels,which are also concentrated singlephase FCC solid solutions and arguably next-of-kin to the MEAs.The tensile and impact properties,across the temperatures range from 373 K to 4.2 K,as well as fracture toughness at 298 K and 77 K,were documented.From room temperature to cryogenic temperature,all three alloys exhibited similarly good mechanical properties;CrCoNi increased its tensile uniform elongation and fracture toughness,which was different from the decreasing trend of the 316 L and 316 LN.On the other hand,the stainless steels showed higher fracture toughness than CrCoNi at all temperatures.To explain the differences in macroscopic mechanical properties of the three alloys,microstructural hardening mechanisms were surveyed.CrCoNi MEA relied on abundant mechanical twinning on the nanoscale,while martensitic transformation was dominant in 316 L at low temperatures.The deformation mechanisms in the plastic zone ahead of the propagating crack in impact and fracture toughness tests were also analyzed and compared for the three alloys.展开更多
High toughness is highly desired for low-alloy steel in engineering structure applications,wherein Charpy impact toughness(CIT)is a critical factor determining the toughness performance.In the current work,CIT data of...High toughness is highly desired for low-alloy steel in engineering structure applications,wherein Charpy impact toughness(CIT)is a critical factor determining the toughness performance.In the current work,CIT data of low-alloy steel were collected,and then CIT prediction models based on machine learning(ML)algorithms were established.Three feature construction strategies were proposed.One is solely based on alloy composition,another is based on alloy composition and heat treatment parameters,and the last one is based on alloy composition,heat treatment parameters,and physical features.A series of ML methods were used to effectively select models and material descriptors from a large number of al-ternatives.Compared with the strategy solely based on the alloy composition,the strategy based on alloy composition,heat treatment parameters together with physical features perform much better.Finally,a genetic programming(GP)based symbolic regression(SR)approach was developed to establish a physical meaningful formula between the selected features and targeted CIT data.展开更多
基金The authors are grateful for the financial supports from the Key Research and Development Program of Guangdong Province,China(2020B090928003)the Natural Science Foundation of Guangdong Province,China(2020A1515011050)+1 种基金the Science and Technology Base and Talent Special Project of Guangxi Province,China(AD19245150)Guangxi University of Science and Technology Doctoral Fund,China(19Z27).
文摘The 12 mm-thick Ti−6Al−4V(TC4)titanium alloy plates were welded using keyhole tungsten inert gas(K-TIG)welding at various heat inputs.The microstructure,grain boundary(GB)characteristics and mechanical properties of the weld metal zone(WMZ)were analyzed.The test results show that the K-TIG welds are well formed,and no obvious defects are observed when the heat input is 2.30−2.62 kJ/mm.When the heat input gradually increases,αlaths increase in length,andα′phase and residualβphase are reduced.The electron backscatter diffraction(EBSD)test results indicate that the high-angle GB proportion in the WMZ increases with the increase of heat input.The tensile strength of the WMZ gradually decreases and the elongation of the WMZ increases when the heat input increases from 2.30 to 2.62 kJ/mm.The impact toughness of the WMZ increases as the heat input increases.
基金Item Sponsored by National Basic Research Program(973 Program) of China (2007CB209800)
文摘Ferritic/martensitic steels with Cr of 9%-12% (in mass percent) are favourable candidates for fuel cladding tube and in-core components of supercritical water-cooled reactor. 9Cr-3WVTiTaN low activation ferritic/martensitic steel, designated as China Nuclear Steel- I (CNS- I ), was patterned after T91 steel (modified 9Cr-lMo) for the reactor. The idea of low activation material and microalloy technology was introduced into the design of the steel. The hardening, tempering and transformation behaviour of CNS- I steel was investigated. The steel has advantages in tensile properties at elevated temperature relative to zircaloy that has been widely used as cladding material for conventional light water reactors. CNS- I steel exhibits tensile properties and impact toughness comparable to T91 steel which exhibits availability in the present fission reactors and fast breeder reactor but includes undesired radioactive elements such as molybdenum and niobium.
基金Supported by National Natural Science Foundation of China(Grant Nos.51975526,51505425)National Key R&D Program of China(Grant No.2018YFC0808800)+1 种基金Open Project of Key Laboratory of MEM of China(Grant No.2020XFZB10)Technical Service Projects(Grant Nos.HZFS-XZ-2022-07-02,XJBY-20211221).
文摘The current research of Charpy impact mainly focuses on obtaining the ductile brittle transition temperature of materials by experiments.Compared with experiments,numerical simulation can study many problems with harsh conditions.However,there are still few studies on the influence of geometric factors such as side grooves.In this paper,the geometry of standard Charpy impact test is designed.Specimens with different widths and side grooves are tested.The finite element model of Charpy impact was established by ABAQUS software.Use test results and simulation results to verify each other.The effects of sample width,side groove depth and side groove bottom fillet on the impact fracture resistance of the sample were studied.The results show that the specimen width is positively correlated with the impact toughness of the specimen.The side groove greatly reduces the impact toughness of the material;the toughness of side groove decreases with the increase of depth;the fracture toughness of side groove decreases with the increase of fillet at the bottom of side groove.The proportion of toughness energy to impact energy of samples was analyzed.The results show that the toughness energy accounts for about 70%of the impact energy of the sample,which has little to do with the geometric characteristics of the sample.This study presents a reliable method for studying Charpy impact tests.The influence of geometric parameters is obtained,which provides a reference method for the study of impact toughness of high toughness materials.
文摘Multi-pass TIG welding was conducted on plates(15×300×180 mm^(3))of aluminum alloy Al-5083 that usually serves as the component material in structural applications such as cryogenics and chemical processing industries.Porosity formation and solidification cracking are the most common defects when TIG welding Al-5083 alloy,which is sensitive to the welding heat input.In the experiment,the heat input was varied from 0.89 kJ/mm to 5 kJ/mm designed by the combination of welding torch travel speed and welding current.Tensile,micro-Vicker hardness and Charpy impact tests were executed to witness the impetus response of heat input on the mechanical properties of the joints.Radiographic inspection was performed to assess the joint’s quality and welding defects.The results show that all the specimens displayed inferior mechanical properties as compared to the base alloy.It was established that porosity was progressively abridged by the increase of heat input.The results also clinched that the use of medium heat input(1-2 kJ/mm)offered the best mechanical properties by eradicating welding defects,in which only about 18.26% of strength was lost.The yield strength of all the welded specimens remained unaffected indica ted no influence of heat input.Partially melted zone(PMZ)width also affected by heat input,which became widened with the increase of heat input.The grain size of PMZ was found to be coarser than the respective grain size in the fusion zone.Charpy impact testing revealed that the absorbed energy by low heat input specimen(welded at high speed)was greater than that of high heat input(welded at low speed)because of low porosity and the formation of equiaxed grains which induce better impact toughness.Cryogenic(-196℃)impact testing was also performed and the results corroborate that impact properties under the cryogenic environment revealed no appreciable change after welding at designated heat input.Finally,Macro and micro fractured surfaces of tensile and impact specimens were analyzed using Stereo and Scan
基金supported by the National Natural Science Foundation of China(Nos.52171164 and 51790484)National Key Laboratory of Science and Technology on Materials under Shock and Impact(WDZC2022-13)+4 种基金the National Key Research and Development Program of China(No.2021YFA0716303)Start-up research grant(No.SRG/2020/000095)of Science and Engineering Research Board,DST,GoI.A∗STAR,Singapore via the Structural Metals and Alloys Program(No.A18B1b0061)the Natural Science Foundation of Liaoning Province(No.2021-MS-009)the China Manned Space Engineering,the Chinese Academy of Sciences(ZDBS-LY-JSC023)the Youth Innovation Promotion Association CAS(No.2021188).
文摘Developing bulk metallic glass composites(BMGCs)with high toughness is vital for their practical application.However,the influence of different microstructures on the impact toughness of BMGCs is still unclear.The effects of Al addition and cryogenic cyclic treatment(CCT)on the Charpy impact toughness,a K,at 298 and 77 K of a series of phase-transformable BMGCs are investigated in this work.It is found that deformation-induced martensitic transformation(DIMT)of theβ-Ti dendrites is the dominant toughening mechanism in the phase-transformable BMGCs at 298 K,but at 77 K,the toughness of BMGCs is primarily determined by the intrinsic toughness of the glass matrix.The addition of Al can moderately tune theβ-Ti phase stability,which then affects the amount of DIMT and impact toughness of the BMGCs at 298 K.However,at 77 K,Al addition causes a monotonic decrease in the toughness of the BMGCs due to the embrittlement of the glass matrix.It is found that CCT can effectively rejuvenate the phase-transformable BMGCs,which results in an enhanced impact toughness at 298 K.However,the toughness at 77 K monotonously decreases with increasing the number of CCT cycles,suggesting that the rejuvenation of the glass matrix affects the toughness at both 298 and 77 K of BMGCs,but in dramatically different ways.These findings reveal the influence of microstructures and CCT on the impact toughness of BMGCs and provide insights that could be useful for designing tougher BMGs and BMGCs.
文摘The aramid fiber礥HMWPE (ultrahigh molecular weight polyethylene) fiber hybrid composites (AF礑F) were ma-nufactured. By Charpy impact, the low velocity impact behavior of AF礑F composite was studied. And the high velocity impact behavior under ballistic impact was also investigated. The influence of hybrid ratio on the performances of low and high velocity impact was analyzed, and hybrid structures with good impact properties under low velocity impact and high velocity were optimized. For Charpy impact, the maximal impact load increased with the accretion of the AF layers for AF礑F hybrid composites. The total impact power was reduced with the decrease of DF layers and the delamination can result in the increase of total impact power. For ballistic impact, the DF ballistic performance was better than that of the AF and the hybrid ratio had a crucial influence. The failure morphology of AF礑F hybrid composite under Charpy impact and ballistic impact was analyzed. The AF礑F hybrid composites in suitable hybrid ratio could attain better performance than AF or DF composites.
基金supported by the National Natural Science Foundation of China(Grant Nos.52122408,51901013,52071023)financial support from the Fundamental Research Funds for the Central Universities(University of Science and Technology Beijing)(Grant Nos.FRF-TP-2021-04C1,and 06500135)supported by USTB MatCom of Beijing Advanced Innovation Center for Materials Genome Engineering。
文摘Pipeline transportation is one of the most economical ways to transport crude oil and natural gas over long distances.High toughness is one of the important qualities of pipeline steel to ensure safe transportation,wherein a key factor characterizing toughness is Charpy impact toughness(CIT).In this work,according to the production line data provided by a steel mill and the experimental data collected in literature,two machine learning model construction strategies were proposed.One was based solely on the production line dataset,and the other was based on the production line dataset together with the literature dataset.In these two strategies,the random forest model displayed the best prediction results,the accuracy of strategy I was 0.58,and the accuracy of strategy II was 0.90,wherein literature data effectively improved the CIT prediction accuracy.Finally,an optimized CIT model based on machine learning algorithms was established.The proposed strategy of literature data-assisted production line data provides a new perspective for optimizing and predicting the performance of traditional structural materials.
基金financially supported by the Ministry of Science and Technology of China(Grant Nos.2019YFA0209900 and 2017YFA0204402)the NSFC Basic Science Center Program for"Multiscale Problems in Nonlinear Mechanics"(Grant No.11988102)+1 种基金the NSFC(Grant Nos.11972350 and 11890680)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB22040503)。
文摘We systematically compared the mechanical properties of CrCoNi,a recently emerged prototypical medium-entropy alloy(MEA)with face-centered-cubic(FCC)structure,with hallmark FCC alloys,in particular,the well-known austenitic 316 L and 316 LN stainless steels,which are also concentrated singlephase FCC solid solutions and arguably next-of-kin to the MEAs.The tensile and impact properties,across the temperatures range from 373 K to 4.2 K,as well as fracture toughness at 298 K and 77 K,were documented.From room temperature to cryogenic temperature,all three alloys exhibited similarly good mechanical properties;CrCoNi increased its tensile uniform elongation and fracture toughness,which was different from the decreasing trend of the 316 L and 316 LN.On the other hand,the stainless steels showed higher fracture toughness than CrCoNi at all temperatures.To explain the differences in macroscopic mechanical properties of the three alloys,microstructural hardening mechanisms were surveyed.CrCoNi MEA relied on abundant mechanical twinning on the nanoscale,while martensitic transformation was dominant in 316 L at low temperatures.The deformation mechanisms in the plastic zone ahead of the propagating crack in impact and fracture toughness tests were also analyzed and compared for the three alloys.
基金supported by the National Natural Science Foundation of China(Nos.52122408,52071023,52071038,51901013)financial support from the Fun-damental Research Funds for the Central Universities(University of Science and Technology Beijing)(Nos.FRF-TP-2021-04C1 and 06500135).
文摘High toughness is highly desired for low-alloy steel in engineering structure applications,wherein Charpy impact toughness(CIT)is a critical factor determining the toughness performance.In the current work,CIT data of low-alloy steel were collected,and then CIT prediction models based on machine learning(ML)algorithms were established.Three feature construction strategies were proposed.One is solely based on alloy composition,another is based on alloy composition and heat treatment parameters,and the last one is based on alloy composition,heat treatment parameters,and physical features.A series of ML methods were used to effectively select models and material descriptors from a large number of al-ternatives.Compared with the strategy solely based on the alloy composition,the strategy based on alloy composition,heat treatment parameters together with physical features perform much better.Finally,a genetic programming(GP)based symbolic regression(SR)approach was developed to establish a physical meaningful formula between the selected features and targeted CIT data.