Vertebrate neurons are highly dynamic cells that undergo several alterations in their functioning and physiologies in adaptation to various external stimuli.In particular,how these neurons respond to physical exercise...Vertebrate neurons are highly dynamic cells that undergo several alterations in their functioning and physiologies in adaptation to various external stimuli.In particular,how these neurons respond to physical exercise has long been an area of active research.Studies of the vertebrate locomotor system’s adaptability suggest multiple mechanisms are involved in the regulation of neuronal activity and properties during exercise.In this brief review,we highlight recent results and insights from the field with a focus on the following mechanisms:(a)alterations in neuronal excitability during acute exercise;(b)alterations in neuronal excitability after chronic exercise;(c)exercise-induced changes in neuronal membrane properties via modulation of ion channel activity;(d)exercise-enhanced dendritic plasticity;and(e)exercise-induced alterations in neuronal gene expression and protein synthesis.Our hope is to update the community with a cellular and molecular understanding of the recent mechanisms underlying the adaptability of the vertebrate locomotor system in response to both acute and chronic physical exercise.展开更多
In order to realize the potential of link adaptation, reliable channel prediction is necessary. In this paper, we propose a novel channel predictor based on Constrained Hidden Markov Model (CHMM). By partitioning the ...In order to realize the potential of link adaptation, reliable channel prediction is necessary. In this paper, we propose a novel channel predictor based on Constrained Hidden Markov Model (CHMM). By partitioning the range of the received signal envelope into several intervals, a CHMM can be constructed with the high efficiency algorithm. Then an improved prediction method is presented, which is more accurate than the simple prediction method of the largest transition probability. Finally, simulation results are given to show the effectiveness of the CHMM channel predictor.展开更多
Densely deployed Wi Fi networks will play a crucial role in providing the capacity for next generation mobile internet. However, due to increasing interference, overlapped channels in Wi Fi networks and throughput eff...Densely deployed Wi Fi networks will play a crucial role in providing the capacity for next generation mobile internet. However, due to increasing interference, overlapped channels in Wi Fi networks and throughput efficiency degradation, densely deployed Wi Fi networks is not a guarantee to obtain higher throughput. An emergent challenge is how to effi ciently utilize scarce spectrum resources, by matching physical layer resources to traffi c demand. In this aspect, access control allocation strategies play a pivotal role but remain too coarse-grained. As a solution, this research proposes a flexible framework for fine-grained channel width adaptation and multi-channel access in Wi Fi networks. This approach, named SFCA(Subcarrier Fine-grained Channel Access), adopts DOFDM(Discontinuous Orthogonal Frequency Division Multiplexing) at the PHY layer. It allocates the frequency resource with a subcarrier granularity, which facilitates the channel width adaptation for multi-channel access and thus brings more fl exibility and higher frequency efficiency. The MAC layer uses a frequencytime domain backoff scheme, which combines the popular time-domain BEB scheme with a frequency-domain backoff to decrease access collision, resulting in higher access probability for the contending nodes. SFCA is compared with FICA(an established access scheme)showing significant outperformance. Finally we present results for next generation 802.11 ac Wi Fi networks.展开更多
In this paper we used the probability distribution of the average channel gain of the fading channel to analyze the degree of fading effects on both the PER (packet error rate) and the throughput in OFDM systems. Inst...In this paper we used the probability distribution of the average channel gain of the fading channel to analyze the degree of fading effects on both the PER (packet error rate) and the throughput in OFDM systems. Instead of solely examining the average received SNR (signal-to-noise ratio) value of a packet, considering the whole distribution of the average received SNR allows us to aggregate a better selection of the mode switching thresholds in the rate adaptive 802.11 a/g WLAN. This paper demonstrates that the set of mode switching thresholds can be determined for each individual target , so that the optimal throughput performance is obtained on a per target basis. Numerical results show that mode switching thresholds should be reduced with the lowering of target values. This conclusion could have significant implications for improving the performances of location (distance)-dependent mobile applications, since the determinations of target values are closely related to the distances between mobile devices and the access point.展开更多
One of the detrimental effects of high salmity on plant cells is considered to be the result of an ion imbalance, particularly a high ratio of Na^+ to K^+ ions, in the cytoplasm. Such an imbalance is probably due to a...One of the detrimental effects of high salmity on plant cells is considered to be the result of an ion imbalance, particularly a high ratio of Na^+ to K^+ ions, in the cytoplasm. Such an imbalance is probably due to a great increase of entry of Na^+ ions into cells and a decline in absorption of K^+ ions under high-salinity conditions. Thus, plant cells展开更多
Rate adaptation is an effective approach to achieve high spectrum efficiency under varying channel condition, especially for wireless communication. This paper proposes rate adaptation at receiver for wireless relay s...Rate adaptation is an effective approach to achieve high spectrum efficiency under varying channel condition, especially for wireless communication. This paper proposes rate adaptation at receiver for wireless relay system. In this scheme, source node uses a new modulation technology, called random projections code (RPC), to achieve rate adaptation. Both relay node and destination node decode the received RPC encoding signals. If destination does not decode RPC correctly, relay node will act compressing and forwarding role by performing LDPC syndrome encoding and sending syndrome coded information to destination node. We discuss how to jointly decode at destination node when it receives RPC coded information from source node and syndrome coded information from relay node. Finally, we evaluate the scheme by bit-error-rate (BER) and good put evaluation metrics. Simulation results show that the coding gain is about 4 dB, 3.1 dB, 2.2 dB and 1.6 dB for LDPC coding rate 0.8, 0.89, 0.94, 0.99 at BER 10-5 respectively. The throughput of the schemes is at least 0.3 bit/s/Hz higher than RPC at SNR ranging from 5 dB to 25 dB.展开更多
基金supported by grants from the National Natural Science Foundation of China(NSFC)to YD(32171129)from China Postdoctoral Science Foundation to YC(2023M731112)from NSFC to RG(32260216)。
文摘Vertebrate neurons are highly dynamic cells that undergo several alterations in their functioning and physiologies in adaptation to various external stimuli.In particular,how these neurons respond to physical exercise has long been an area of active research.Studies of the vertebrate locomotor system’s adaptability suggest multiple mechanisms are involved in the regulation of neuronal activity and properties during exercise.In this brief review,we highlight recent results and insights from the field with a focus on the following mechanisms:(a)alterations in neuronal excitability during acute exercise;(b)alterations in neuronal excitability after chronic exercise;(c)exercise-induced changes in neuronal membrane properties via modulation of ion channel activity;(d)exercise-enhanced dendritic plasticity;and(e)exercise-induced alterations in neuronal gene expression and protein synthesis.Our hope is to update the community with a cellular and molecular understanding of the recent mechanisms underlying the adaptability of the vertebrate locomotor system in response to both acute and chronic physical exercise.
文摘In order to realize the potential of link adaptation, reliable channel prediction is necessary. In this paper, we propose a novel channel predictor based on Constrained Hidden Markov Model (CHMM). By partitioning the range of the received signal envelope into several intervals, a CHMM can be constructed with the high efficiency algorithm. Then an improved prediction method is presented, which is more accurate than the simple prediction method of the largest transition probability. Finally, simulation results are given to show the effectiveness of the CHMM channel predictor.
基金supported by National Natural Science Foundation of China(No.61471376)the 863 project(No.2014AA01A701)
文摘Densely deployed Wi Fi networks will play a crucial role in providing the capacity for next generation mobile internet. However, due to increasing interference, overlapped channels in Wi Fi networks and throughput efficiency degradation, densely deployed Wi Fi networks is not a guarantee to obtain higher throughput. An emergent challenge is how to effi ciently utilize scarce spectrum resources, by matching physical layer resources to traffi c demand. In this aspect, access control allocation strategies play a pivotal role but remain too coarse-grained. As a solution, this research proposes a flexible framework for fine-grained channel width adaptation and multi-channel access in Wi Fi networks. This approach, named SFCA(Subcarrier Fine-grained Channel Access), adopts DOFDM(Discontinuous Orthogonal Frequency Division Multiplexing) at the PHY layer. It allocates the frequency resource with a subcarrier granularity, which facilitates the channel width adaptation for multi-channel access and thus brings more fl exibility and higher frequency efficiency. The MAC layer uses a frequencytime domain backoff scheme, which combines the popular time-domain BEB scheme with a frequency-domain backoff to decrease access collision, resulting in higher access probability for the contending nodes. SFCA is compared with FICA(an established access scheme)showing significant outperformance. Finally we present results for next generation 802.11 ac Wi Fi networks.
文摘In this paper we used the probability distribution of the average channel gain of the fading channel to analyze the degree of fading effects on both the PER (packet error rate) and the throughput in OFDM systems. Instead of solely examining the average received SNR (signal-to-noise ratio) value of a packet, considering the whole distribution of the average received SNR allows us to aggregate a better selection of the mode switching thresholds in the rate adaptive 802.11 a/g WLAN. This paper demonstrates that the set of mode switching thresholds can be determined for each individual target , so that the optimal throughput performance is obtained on a per target basis. Numerical results show that mode switching thresholds should be reduced with the lowering of target values. This conclusion could have significant implications for improving the performances of location (distance)-dependent mobile applications, since the determinations of target values are closely related to the distances between mobile devices and the access point.
基金Project supported by the National Natural Science Foundation of China.
文摘One of the detrimental effects of high salmity on plant cells is considered to be the result of an ion imbalance, particularly a high ratio of Na^+ to K^+ ions, in the cytoplasm. Such an imbalance is probably due to a great increase of entry of Na^+ ions into cells and a decline in absorption of K^+ ions under high-salinity conditions. Thus, plant cells
文摘Rate adaptation is an effective approach to achieve high spectrum efficiency under varying channel condition, especially for wireless communication. This paper proposes rate adaptation at receiver for wireless relay system. In this scheme, source node uses a new modulation technology, called random projections code (RPC), to achieve rate adaptation. Both relay node and destination node decode the received RPC encoding signals. If destination does not decode RPC correctly, relay node will act compressing and forwarding role by performing LDPC syndrome encoding and sending syndrome coded information to destination node. We discuss how to jointly decode at destination node when it receives RPC coded information from source node and syndrome coded information from relay node. Finally, we evaluate the scheme by bit-error-rate (BER) and good put evaluation metrics. Simulation results show that the coding gain is about 4 dB, 3.1 dB, 2.2 dB and 1.6 dB for LDPC coding rate 0.8, 0.89, 0.94, 0.99 at BER 10-5 respectively. The throughput of the schemes is at least 0.3 bit/s/Hz higher than RPC at SNR ranging from 5 dB to 25 dB.