期刊文献+

实用环境语音识别鲁棒性技术研究与展望 被引量:1

Research and Prospect on Robustness Technology in Real-environment Speech Recognition
下载PDF
导出
摘要 语音识别系统在实用环境中的鲁棒性是语音识别技术实用化的关键问题。鲁棒性研究的核心问题是如何解决实用环境语音特征和模型与干净环境语音识别系统的失配问题,这涉及到噪声补偿、信道适应、说话人自适应等关键技术。文章综述了语音识别鲁棒性技术研究的主要方法、原理及研究现状,分析了实用环境语音识别中声学模型和语言模型的适应技术,并展望了近期语音识别实用化技术发展的研究方向。 The robustness of speech recognition system in real environment is the key problem in the application of speech recognition technique.The kernel problem is how to overcome the mismatching of acoustic feature and model between real and clean environments,which involves the important techniques on noise environment compensation, channel adaptation and speaker adaptation etc.This paper reviews the main methods,principles and ad-hoc research techniques of robust researches,analyzes the adaptation techniques of acoustic model and language model in real environment,and proposes the recent prospect of research interests in real-world environment speech recognition.
作者 刘敬伟 肖熙
出处 《计算机工程与应用》 CSCD 北大核心 2006年第24期7-12,共6页 Computer Engineering and Applications
基金 国家863高技术研究发展计划资助项目(编号:2001AA114071) 中国博士后科学基金 清华大学博士后基金 北京航空航天大学"985二期""复杂系统与空间物质结构科技创新平台"项目资助
关键词 语音识别 实用环境 稳健性 信道适应 说话人自适应 speech recognition,real-world environment,robustness,channel adaptation,speaker adaptation
  • 相关文献

参考文献45

  • 1杨行峻,迟惠生等编著..语音信号数字处理[M].北京:电子工业出版社,1995:451.
  • 2Cole R,Hirschman L,Atlas L et al.The challenge of spoken language systems:research directories for the nineties[J].IEEE Transaction on Speech and Audio Processing,1995;3(1):1~20 被引量:1
  • 3Young S.Statistical modelling in continuous speech recognition[C].In:Proc International Conference on Uncertainty in Artificial Intelligence,Seattle,WA,2001-08 被引量:1
  • 4Gauvain J L,Lamel L.Large Vocabulary Continuous Speech Recognition:from Laboratory Systems towards Real-World Applications[J].IEICE Trans Information,1996;E00-A(1) 被引量:1
  • 5Cai H,Grivel E,Najim M.A dual Kalman filter-based smoother for speech enhancement[C].In:IEEE International Conference on Acoustics,Speech,and Signal Processing,Hong Kong,2003:864~867 被引量:1
  • 6Agarwal A,Cheng Y M.Two-stage Mel-Warped Wiener Filter for Robust Speech Recognition[C].In:Proceeding of ASRU,1999:67~70 被引量:1
  • 7Xu T,Cao Z G.Combination of Feature Weight and Speech Enhancement for Robust ASR at low SNRs[C].In:Proceedings of IEEE TENCON'02,2002:441~444 被引量:1
  • 8Kim D S,Lee S Y,Kil R M.Auditory processing of speech signals for robust speech recognition in real-world noisy environments[C].In:IEEE Trans on Speech and Audio Processing,1999 ;7:55~69 被引量:1
  • 9Gajie B,Paliwal K K.Robust parameters for speech recognition based on subband spectral centroid histograms[C].In:7th European conference on speech communication and technology(Eurospeech 2001),Aalborg,Denmark,2001:591~594 被引量:1
  • 10Gajie B,Paliwal K K.Robust speech recognition using features based on zero crossings with peak amplitudes[C].In:IEEE International Conference on Acoustics,Speech,and Signal Processing,HongKong,2003:64~67 被引量:1

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部