The long-term goal of artificial intelligence (AI) is to make machines learn and think like human beings. Due to the high levels of uncertainty and vulnerability in human life and the open-ended nature of problems t...The long-term goal of artificial intelligence (AI) is to make machines learn and think like human beings. Due to the high levels of uncertainty and vulnerability in human life and the open-ended nature of problems that humans are facing, no matter how intelligent machines are, they are unable to completely replace humans. Therefore, it is necessary to introduce human cognitive capabilities or human-like cognitive models into AI systems to develop a new form of AI, that is, hybrid-augmented intelligence. This form of AI or machine intelligence is a feasible and important developing model. Hybrid-augmented intelligence can be divided into two basic models: one is human-in-the-loop augmented intelligence with human-computer collaboration, and the other is cognitive computing based augmented intelligence, in which a cognitive model is embedded in the machine learning system. This survey describes a basic framework for human-computer collaborative hybrid-augmented intelligence, and the basic elements of hybrid-augmented intelligence based on cognitive computing. These elements include intuitive reasoning, causal models, evolution of memory and knowledge, especially the role and basic principles of intuitive reasoning for complex problem solving, and the cognitive learning framework for visual scene understanding based on memory and reasoning. Several typical applications of hybrid-augmented intelligence in related fields are given.展开更多
People learn causal relations since childhood using counterfactual reasoning. Counterfactual reasoning uses counterfactual examples which take the form of “what if this has happened differently”. Counterfactual exam...People learn causal relations since childhood using counterfactual reasoning. Counterfactual reasoning uses counterfactual examples which take the form of “what if this has happened differently”. Counterfactual examples are also the basis of counterfactual explanation in explainable artificial intelligence (XAI). However, a framework that relies solely on optimization algorithms to find and present counterfactual samples cannot help users gain a deeper understanding of the system. Without a way to verify their understanding, the users can even be misled by such explanations. Such limitations can be overcome through an interactive and iterative framework that allows the users to explore their desired “what-if” scenarios. The purpose of our research is to develop such a framework. In this paper, we present our “what-if” XAI framework (WiXAI), which visualizes the artificial intelligence (AI) classification model from the perspective of the user’s sample and guides their “what-if” exploration. We also formulated how to use the WiXAI framework to generate counterfactuals and understand the feature-feature and feature-output relations in-depth for a local sample. These relations help move the users toward causal understanding.展开更多
基金Project supported by the Chinese Academy of Engi- neering, the National Natural Science Foundation of China (No. L1522023), the National Basic Research Program (973) of China (No. 2015CB351703), and the National Key Research and Development Plan (Nos. 2016YFB1001004 and 2016YFB1000903)
文摘The long-term goal of artificial intelligence (AI) is to make machines learn and think like human beings. Due to the high levels of uncertainty and vulnerability in human life and the open-ended nature of problems that humans are facing, no matter how intelligent machines are, they are unable to completely replace humans. Therefore, it is necessary to introduce human cognitive capabilities or human-like cognitive models into AI systems to develop a new form of AI, that is, hybrid-augmented intelligence. This form of AI or machine intelligence is a feasible and important developing model. Hybrid-augmented intelligence can be divided into two basic models: one is human-in-the-loop augmented intelligence with human-computer collaboration, and the other is cognitive computing based augmented intelligence, in which a cognitive model is embedded in the machine learning system. This survey describes a basic framework for human-computer collaborative hybrid-augmented intelligence, and the basic elements of hybrid-augmented intelligence based on cognitive computing. These elements include intuitive reasoning, causal models, evolution of memory and knowledge, especially the role and basic principles of intuitive reasoning for complex problem solving, and the cognitive learning framework for visual scene understanding based on memory and reasoning. Several typical applications of hybrid-augmented intelligence in related fields are given.
文摘People learn causal relations since childhood using counterfactual reasoning. Counterfactual reasoning uses counterfactual examples which take the form of “what if this has happened differently”. Counterfactual examples are also the basis of counterfactual explanation in explainable artificial intelligence (XAI). However, a framework that relies solely on optimization algorithms to find and present counterfactual samples cannot help users gain a deeper understanding of the system. Without a way to verify their understanding, the users can even be misled by such explanations. Such limitations can be overcome through an interactive and iterative framework that allows the users to explore their desired “what-if” scenarios. The purpose of our research is to develop such a framework. In this paper, we present our “what-if” XAI framework (WiXAI), which visualizes the artificial intelligence (AI) classification model from the perspective of the user’s sample and guides their “what-if” exploration. We also formulated how to use the WiXAI framework to generate counterfactuals and understand the feature-feature and feature-output relations in-depth for a local sample. These relations help move the users toward causal understanding.