A standard method is proposed to prove strictly that the Riemann Zeta function equation has no non-trivial zeros. The real part and imaginary part of the Riemann Zeta function equation are separated completely. Suppo...A standard method is proposed to prove strictly that the Riemann Zeta function equation has no non-trivial zeros. The real part and imaginary part of the Riemann Zeta function equation are separated completely. Suppose ξ(s) = ξ1(a,b) + iξ2(a,b) = 0 but ζ(s) = ζ1(a,b) + iζ2(a,b) ≠ 0 with s = a + ib at first. By comparing the real part and the imaginary part of Zeta function equation individually, a set of equation about a and b is obtained. It is proved that this equation set only has the solutions of trivial zeros. In order to obtain possible non-trivial zeros, the only way is to suppose that ζ1(a,b) = 0 and ζ2(a,b) = 0. However, by using the compassion method of infinite series, it is proved that ζ1(a,b) ≠ 0 and ζ2(a,b) ≠ 0. So the Riemann Zeta function equation has no non-trivial zeros. The Riemann hypothesis does not hold.展开更多
文摘A standard method is proposed to prove strictly that the Riemann Zeta function equation has no non-trivial zeros. The real part and imaginary part of the Riemann Zeta function equation are separated completely. Suppose ξ(s) = ξ1(a,b) + iξ2(a,b) = 0 but ζ(s) = ζ1(a,b) + iζ2(a,b) ≠ 0 with s = a + ib at first. By comparing the real part and the imaginary part of Zeta function equation individually, a set of equation about a and b is obtained. It is proved that this equation set only has the solutions of trivial zeros. In order to obtain possible non-trivial zeros, the only way is to suppose that ζ1(a,b) = 0 and ζ2(a,b) = 0. However, by using the compassion method of infinite series, it is proved that ζ1(a,b) ≠ 0 and ζ2(a,b) ≠ 0. So the Riemann Zeta function equation has no non-trivial zeros. The Riemann hypothesis does not hold.