We address the impact of nonlocality in the physical features exhibited by solitons supported by Kerr-type nonlinear media with an imprinted optical lattice. We discuss the solitons solution for a class of nonlinear S...We address the impact of nonlocality in the physical features exhibited by solitons supported by Kerr-type nonlinear media with an imprinted optical lattice. We discuss the solitons solution for a class of nonlinear SchrSdinger equations in the optical lattice with nonlocal nonlinearity. We also show via a uniform priori estimate that existence and uniqueness of the global solution for the initial problem.展开更多
This paper applies bilinear immersed finite elements (IFEs) in the interior penalty discontinuous Galerkin (DG) methods for solving a second order elliptic equation with discontinuous coefficient. A discontinuous ...This paper applies bilinear immersed finite elements (IFEs) in the interior penalty discontinuous Galerkin (DG) methods for solving a second order elliptic equation with discontinuous coefficient. A discontinuous bihnear IFE space is constructed and applied to both the symmetric and nonsymmetric interior penalty DG formulations. The new methods can solve an interface problem on a Cartesian mesh independent of the interface with local refinement at any locations needed even if the interface has a nontrivial geometry. Numerical examples are provided to show features of these methods.展开更多
In order to obtain an expected numerical solution, a fully discrete discontinuous Galerkin method is applied to a kind of reactive transport problems in two dimension. That is to say, the space variable is discretized...In order to obtain an expected numerical solution, a fully discrete discontinuous Galerkin method is applied to a kind of reactive transport problems in two dimension. That is to say, the space variable is discretized with the symmetric interior penalty Calerkin method (SIPG), and the time variable is done with the backward Euler method. Making use of the duality technique, hp approximation properties and the interpolation theory, a residual-type a posteriori error estimation is achieved, which can be used for adaptivity. Compared with the analyses of semi-discretization, the current presentation is more challenging and more significant.展开更多
基金Supported by the Natural Science Foundation of Henan Province of China (No.112300410054,No.12A110004)
文摘We address the impact of nonlocality in the physical features exhibited by solitons supported by Kerr-type nonlinear media with an imprinted optical lattice. We discuss the solitons solution for a class of nonlinear SchrSdinger equations in the optical lattice with nonlocal nonlinearity. We also show via a uniform priori estimate that existence and uniqueness of the global solution for the initial problem.
基金supported by NSF grant DMS-0713763the Research Grants Council of the Hong Kong Special Administrative Region, China (Project No. PolyU 501709)the AMSS-PolyU Joint Research Institute for Engineering and Management Mathematics, and NSERC (Canada)
文摘This paper applies bilinear immersed finite elements (IFEs) in the interior penalty discontinuous Galerkin (DG) methods for solving a second order elliptic equation with discontinuous coefficient. A discontinuous bihnear IFE space is constructed and applied to both the symmetric and nonsymmetric interior penalty DG formulations. The new methods can solve an interface problem on a Cartesian mesh independent of the interface with local refinement at any locations needed even if the interface has a nontrivial geometry. Numerical examples are provided to show features of these methods.
基金supported by Hunan Provincial Natural Science Foundation of China under Grant No. 10JJ3021Scientific Research Fund of Hunan Provincial Education Department under Grant No.11B032the Planned Science and Technology Project of Hunan Province and Aid program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province
文摘In order to obtain an expected numerical solution, a fully discrete discontinuous Galerkin method is applied to a kind of reactive transport problems in two dimension. That is to say, the space variable is discretized with the symmetric interior penalty Calerkin method (SIPG), and the time variable is done with the backward Euler method. Making use of the duality technique, hp approximation properties and the interpolation theory, a residual-type a posteriori error estimation is achieved, which can be used for adaptivity. Compared with the analyses of semi-discretization, the current presentation is more challenging and more significant.