In the present paper, the efficiency of an enhanced formulation of the stabilized corrective smoothed particle method (CSPM) for simulation of shock wave propagation and reflection from fixed and moving solid bounda...In the present paper, the efficiency of an enhanced formulation of the stabilized corrective smoothed particle method (CSPM) for simulation of shock wave propagation and reflection from fixed and moving solid boundaries in compressible fluids is investigated. The Lagrangian nature and its accuracy for imposing the boundary conditions are the two main reasons for adoption of CSPM. The governing equations are further modified for imposition of moving solid boundary conditions. In addition to the traditional artificial viscosity, which can remove numerically induced abnormal jumps in the field values, a velocity field smoothing technique is introduced as an efficient method for stabilizing the solution. The method has been implemented for one- and two-dimensional shock wave propagation and reflection from fixed and moving boundaries and the results have been compared with other available solutions. The method has also been adopted for simulation of shock wave propagation and reflection from infinite and finite solid boundaries.展开更多
We compare several approximations for second derivatives with Smoothed Particle Hydrodynamics (SPH). A first-order consistent approximation, derived from the zeroth-order consistent Corrective Smoothed Particle Method...We compare several approximations for second derivatives with Smoothed Particle Hydrodynamics (SPH). A first-order consistent approximation, derived from the zeroth-order consistent Corrective Smoothed Particle Method (CSPM), is proposed. The accuracy of the new method (ICSPM) is similar to that of the Finite Particle Method (FPM) and Modified Smoothed Particle Hydrodynamics (MSPH), but it is computationally less expensive. We demonstrate the accuracy of our method by studying heat conduction in a slab with discontinuous conductivity coefficients. We use both uniformly and pseudo-randomly distributed particles.展开更多
For the resource utilization of the solid waste coking sulfur paste and the improvement of performance of the asphalt mixture,a method for preparing modified asphalt mixture with coking sulfur paste modifier(CSPM)is h...For the resource utilization of the solid waste coking sulfur paste and the improvement of performance of the asphalt mixture,a method for preparing modified asphalt mixture with coking sulfur paste modifier(CSPM)is herein proposed.Compared with the matrix asphalt mixture,the Marshall stability of the 30%CSPM modified asphalt mixture increased by 38.3%,the dynamic stability increased by nearly one time(reaching 1847.5 times/mm),the splitting strength ratio increased by 39.3%while the splitting tensile strength decreased by 11.7%.After curing,the performance of the CSPM modified asphalt mixture was further improved.The results show that CSPM improved the high temperature stability and water damage resistance of the asphalt mixture,and the low-temperature anti-cracking performance of that was slightly reduced.Chemical analysis of asphalt binders shows that a little sulfur reacted with asphalt to produce polysulfide compounds(R-Sx-R′),and a part of sulfur existed in the form of crystalline sulfur which was further increased after curing.The presence of crystalline sulfur as an inorganic filler is the key point for improving the high temperature stability and water resistance performance of modified asphalt mixture.展开更多
文摘In the present paper, the efficiency of an enhanced formulation of the stabilized corrective smoothed particle method (CSPM) for simulation of shock wave propagation and reflection from fixed and moving solid boundaries in compressible fluids is investigated. The Lagrangian nature and its accuracy for imposing the boundary conditions are the two main reasons for adoption of CSPM. The governing equations are further modified for imposition of moving solid boundary conditions. In addition to the traditional artificial viscosity, which can remove numerically induced abnormal jumps in the field values, a velocity field smoothing technique is introduced as an efficient method for stabilizing the solution. The method has been implemented for one- and two-dimensional shock wave propagation and reflection from fixed and moving boundaries and the results have been compared with other available solutions. The method has also been adopted for simulation of shock wave propagation and reflection from infinite and finite solid boundaries.
文摘We compare several approximations for second derivatives with Smoothed Particle Hydrodynamics (SPH). A first-order consistent approximation, derived from the zeroth-order consistent Corrective Smoothed Particle Method (CSPM), is proposed. The accuracy of the new method (ICSPM) is similar to that of the Finite Particle Method (FPM) and Modified Smoothed Particle Hydrodynamics (MSPH), but it is computationally less expensive. We demonstrate the accuracy of our method by studying heat conduction in a slab with discontinuous conductivity coefficients. We use both uniformly and pseudo-randomly distributed particles.
基金Project(201703D321006)supported by the Shanxi Provincial Key Research and Development Project(Social Development),China。
文摘For the resource utilization of the solid waste coking sulfur paste and the improvement of performance of the asphalt mixture,a method for preparing modified asphalt mixture with coking sulfur paste modifier(CSPM)is herein proposed.Compared with the matrix asphalt mixture,the Marshall stability of the 30%CSPM modified asphalt mixture increased by 38.3%,the dynamic stability increased by nearly one time(reaching 1847.5 times/mm),the splitting strength ratio increased by 39.3%while the splitting tensile strength decreased by 11.7%.After curing,the performance of the CSPM modified asphalt mixture was further improved.The results show that CSPM improved the high temperature stability and water damage resistance of the asphalt mixture,and the low-temperature anti-cracking performance of that was slightly reduced.Chemical analysis of asphalt binders shows that a little sulfur reacted with asphalt to produce polysulfide compounds(R-Sx-R′),and a part of sulfur existed in the form of crystalline sulfur which was further increased after curing.The presence of crystalline sulfur as an inorganic filler is the key point for improving the high temperature stability and water resistance performance of modified asphalt mixture.