Indoor Wi-Fi localization of mobile devices plays a more and more important role along with the rapid growth of location-based services and Wi-Fi mobile devices.In this paper,a new method of constructing the channel s...Indoor Wi-Fi localization of mobile devices plays a more and more important role along with the rapid growth of location-based services and Wi-Fi mobile devices.In this paper,a new method of constructing the channel state information(CSI)image is proposed to improve the localization accuracy.Compared with previous methods of constructing the CSI image,the new kind of CSI image proposed is able to contain more channel information such as the angle of arrival(AoA),the time of arrival(TOA)and the amplitude.We construct three gray images by using phase differences of different antennas and amplitudes of different subcarriers of one antenna,and then merge them to form one RGB image.The localization method has off-line stage and on-line stage.In the off-line stage,the composed three-channel RGB images at training locations are used to train a convolutional neural network(CNN)which has been proved to be efficient in image recognition.In the on-line stage,images at test locations are fed to the well-trained CNN model and the localization result is the weighted mean value with highest output values.The performance of the proposed method is verified with extensive experiments in the representative indoor environment.展开更多
为了提升信道状态信息(channel state information,CSI)指纹室内定位的性能,提出了一种改进MixNet的CSI图像指纹室内定位方法.在离线阶段,通过选择定位参考点(reference point,RP)处信号强度指示(received signal strength indication,R...为了提升信道状态信息(channel state information,CSI)指纹室内定位的性能,提出了一种改进MixNet的CSI图像指纹室内定位方法.在离线阶段,通过选择定位参考点(reference point,RP)处信号强度指示(received signal strength indication,RSSI)最强的3个接入点(access point,AP),提取其CSI数据并转换为图像;然后利用改进的MixNet模型对图像进行训练并保存模型.其中改进的MixNet引入了坐标注意力(coordinate attention,CA)和残差连接.首先,将MixNet-s中的SE(squeeze-and-excitation)注意力替换为CA,以增强网络的信息表示能力并更精确地获取CSI图像指纹特征.其次,根据MixNet-s模型的特点构建残差连接,以增强网络的表示能力并防止过拟合.最后,通过减小网络深度确保所有网络层得到充分训练;在线阶段,采集目标设备的CSI数据并转换为图像,输入已训练好的改进MixNet模型(命名为MixNet-CA);最后利用加权质心算法根据模型输出的概率值估计目标设备的最终位置.提出方法在室内环境中进行了验证,达到了0.3620 m的平均定位误差.展开更多
Crime scene investigation(CSI)image is key evidence carrier during criminal investiga-tion,in which CSI image retrieval can assist the public police to obtain criminal clues.Moreover,with the rapid development of deep...Crime scene investigation(CSI)image is key evidence carrier during criminal investiga-tion,in which CSI image retrieval can assist the public police to obtain criminal clues.Moreover,with the rapid development of deep learning,data-driven paradigm has become the mainstreammethod of CSI image feature extraction and representation,and in this process,datasets provideeffective support for CSI retrieval performance.However,there is a lack of systematic research onCSI image retrieval methods and datasets.Therefore,we present an overview of the existing worksabout one-class and multi-class CSI image retrieval based on deep learning.According to theresearch,based on their technical functionalities and implementation methods,CSI image retrievalis roughly classified into five categories:feature representation,metric learning,generative adversar-ial networks,autoencoder networks and attention networks.Furthermore,We analyzed the remain-ing challenges and discussed future work directions in this field.展开更多
A novel 2-D cosmic ray position detector has been built and studied. It is integrated from a CsI(Na) crystal pixel array, an optical fiber array, an image intensifier and an ICCD camera. The 2-D positions of one cos...A novel 2-D cosmic ray position detector has been built and studied. It is integrated from a CsI(Na) crystal pixel array, an optical fiber array, an image intensifier and an ICCD camera. The 2-D positions of one cosmic ray track is determined by the location of a fired CsI(Na) pixel. The scintillation light of these 1.0× 1.0 mm CsI(Na) pixels is delivered to the image intensifier through fibers. The light information is recorded in the ICCD camera in the form of images, from which the 2-D positions can be reconstructed. The background noise and cosmic ray images have been studied. The study shows that the cosmic ray detection efficiency can reach up to 11.4%, while the false accept rate is less than 1%.展开更多
基金supported by the National Natural Science Foundation of China (No.61631013)National Key Basic Research Program of China (973 Program) (No. 2013CB329002)National Major Project (NO. 2018ZX03001006003)
文摘Indoor Wi-Fi localization of mobile devices plays a more and more important role along with the rapid growth of location-based services and Wi-Fi mobile devices.In this paper,a new method of constructing the channel state information(CSI)image is proposed to improve the localization accuracy.Compared with previous methods of constructing the CSI image,the new kind of CSI image proposed is able to contain more channel information such as the angle of arrival(AoA),the time of arrival(TOA)and the amplitude.We construct three gray images by using phase differences of different antennas and amplitudes of different subcarriers of one antenna,and then merge them to form one RGB image.The localization method has off-line stage and on-line stage.In the off-line stage,the composed three-channel RGB images at training locations are used to train a convolutional neural network(CNN)which has been proved to be efficient in image recognition.In the on-line stage,images at test locations are fed to the well-trained CNN model and the localization result is the weighted mean value with highest output values.The performance of the proposed method is verified with extensive experiments in the representative indoor environment.
文摘为了提升信道状态信息(channel state information,CSI)指纹室内定位的性能,提出了一种改进MixNet的CSI图像指纹室内定位方法.在离线阶段,通过选择定位参考点(reference point,RP)处信号强度指示(received signal strength indication,RSSI)最强的3个接入点(access point,AP),提取其CSI数据并转换为图像;然后利用改进的MixNet模型对图像进行训练并保存模型.其中改进的MixNet引入了坐标注意力(coordinate attention,CA)和残差连接.首先,将MixNet-s中的SE(squeeze-and-excitation)注意力替换为CA,以增强网络的信息表示能力并更精确地获取CSI图像指纹特征.其次,根据MixNet-s模型的特点构建残差连接,以增强网络的表示能力并防止过拟合.最后,通过减小网络深度确保所有网络层得到充分训练;在线阶段,采集目标设备的CSI数据并转换为图像,输入已训练好的改进MixNet模型(命名为MixNet-CA);最后利用加权质心算法根据模型输出的概率值估计目标设备的最终位置.提出方法在室内环境中进行了验证,达到了0.3620 m的平均定位误差.
文摘Crime scene investigation(CSI)image is key evidence carrier during criminal investiga-tion,in which CSI image retrieval can assist the public police to obtain criminal clues.Moreover,with the rapid development of deep learning,data-driven paradigm has become the mainstreammethod of CSI image feature extraction and representation,and in this process,datasets provideeffective support for CSI retrieval performance.However,there is a lack of systematic research onCSI image retrieval methods and datasets.Therefore,we present an overview of the existing worksabout one-class and multi-class CSI image retrieval based on deep learning.According to theresearch,based on their technical functionalities and implementation methods,CSI image retrievalis roughly classified into five categories:feature representation,metric learning,generative adversar-ial networks,autoencoder networks and attention networks.Furthermore,We analyzed the remain-ing challenges and discussed future work directions in this field.
文摘A novel 2-D cosmic ray position detector has been built and studied. It is integrated from a CsI(Na) crystal pixel array, an optical fiber array, an image intensifier and an ICCD camera. The 2-D positions of one cosmic ray track is determined by the location of a fired CsI(Na) pixel. The scintillation light of these 1.0× 1.0 mm CsI(Na) pixels is delivered to the image intensifier through fibers. The light information is recorded in the ICCD camera in the form of images, from which the 2-D positions can be reconstructed. The background noise and cosmic ray images have been studied. The study shows that the cosmic ray detection efficiency can reach up to 11.4%, while the false accept rate is less than 1%.