建立了6H SiC材料和器件模型,应用二维器件仿真软件MEDICI对所设计的亚微米6H SiC CMOS倒相器的温度特性进行了研究.研究结果表明,该倒相器在600K的高温下仍可以正常工作,且具有良好的电压转移特性和瞬态特性;在300~600K的温度范围内,...建立了6H SiC材料和器件模型,应用二维器件仿真软件MEDICI对所设计的亚微米6H SiC CMOS倒相器的温度特性进行了研究.研究结果表明,该倒相器在600K的高温下仍可以正常工作,且具有良好的电压转移特性和瞬态特性;在300~600K的温度范围内,倒相器阈值电压由1.218V变化到1.274V,变化幅度较小.展开更多
This paper reports the DC steady-state voltage and current transfer characteristics and power dissipation of the Complimentary Metal-Oxide-Silicon (CMOS) voltage-inverter circuit using one physical Bipolar Field-Eff...This paper reports the DC steady-state voltage and current transfer characteristics and power dissipation of the Complimentary Metal-Oxide-Silicon (CMOS) voltage-inverter circuit using one physical Bipolar Field-Effect Transistor (BiFET) of nanometer dimensions. The electrical characteristics are numerically obtained by solving the five partial dif- ferential equations for the transistor structure of two MOS-gates on the two surfaces of a thin pure silicon base layer with electron and hole contacts on both ends of the thin base. Internal and CMOS boundary conditions are used on the three potentials (electrostatic and electron and hole electrochemical potentials). Families of curves are rapidly computed using a dual-processor personal computer running the 64-bit FORTRAN on the Windows XP operating system.展开更多
文摘建立了6H SiC材料和器件模型,应用二维器件仿真软件MEDICI对所设计的亚微米6H SiC CMOS倒相器的温度特性进行了研究.研究结果表明,该倒相器在600K的高温下仍可以正常工作,且具有良好的电压转移特性和瞬态特性;在300~600K的温度范围内,倒相器阈值电压由1.218V变化到1.274V,变化幅度较小.
文摘This paper reports the DC steady-state voltage and current transfer characteristics and power dissipation of the Complimentary Metal-Oxide-Silicon (CMOS) voltage-inverter circuit using one physical Bipolar Field-Effect Transistor (BiFET) of nanometer dimensions. The electrical characteristics are numerically obtained by solving the five partial dif- ferential equations for the transistor structure of two MOS-gates on the two surfaces of a thin pure silicon base layer with electron and hole contacts on both ends of the thin base. Internal and CMOS boundary conditions are used on the three potentials (electrostatic and electron and hole electrochemical potentials). Families of curves are rapidly computed using a dual-processor personal computer running the 64-bit FORTRAN on the Windows XP operating system.