The formation potential of four trihalomethanes (THMFP) and seven haloacetic acids (HAA7FP) in 13 source waters taken from four major water basin areas in China was evaluated using the simulated distribution syst...The formation potential of four trihalomethanes (THMFP) and seven haloacetic acids (HAA7FP) in 13 source waters taken from four major water basin areas in China was evaluated using the simulated distribution system (SDS) chlorination method. The specific ultraviolet absorbance (SUVA254: the ratio of UV254 to dissolved organic carbon (DOC)), which ranged between 0.9 and 5.0 L/(mg.m), showed that the organic compounds in different source waters exhibited different reactivities with chlorine. The HAA7FP of source waters ranged from 20 to 448 μg/L and the THMFP ranged from 29 to 259 μg/L. The HAA7FP concentrations were higher than the THMFP concentrations in all but one of the samples. Therefore, the risks of haloacetic acids (HAAs) should be of concern in some source waters. TCM (chloroform) and BDCM (bromodichloromethane) were the major THM constituents, while TCAA (trichloroacetic acid) and DCAA (dichloroacetic acid) were the major HAA species. Br-THM (brominated THM species) were much higher than Br- HAA (brominated HAA species), and the formation of Br-DBP (Br-THM and Br-HAA) should be of concern when the bromide concentration is over 100 μg/L.展开更多
Considerable energy is consumed during steel manufacturing process. Byproduct gas emerges as secondary energy in the process; however, it is also an atmospheric pollution source if it is released into the air. Therefo...Considerable energy is consumed during steel manufacturing process. Byproduct gas emerges as secondary energy in the process; however, it is also an atmospheric pollution source if it is released into the air. Therefore, the optimal utilization of byproduct gas not only saves energy but also protects environment. To solve this issue, a fore- cast model of gas supply, gas demand and surplus gas in a steel plant was proposed. With the progress of energy conservation, the amount of surplus gas was very large. In a steel plant, the surplus gas was usually sent to boilers to generate steam. However, each boiler had an individual efficiency. So the optimization of the utilization of surplus gas in boilers was a key topic. A dynamic programming method was used to develop an optimal utilization strategy for surplus gas. Finally, a case study providing a sound confirmation was given.展开更多
基金supported by the High-Tech Research and Development Program (863) of China(No.2007AA06A414)the National Basic Research Development Program (973) of China(No. 2006CB403306)the Chinese Academy of Sciences Major Projects of Knowledge Innovation Program(No. KZCX1-YW-06)
文摘The formation potential of four trihalomethanes (THMFP) and seven haloacetic acids (HAA7FP) in 13 source waters taken from four major water basin areas in China was evaluated using the simulated distribution system (SDS) chlorination method. The specific ultraviolet absorbance (SUVA254: the ratio of UV254 to dissolved organic carbon (DOC)), which ranged between 0.9 and 5.0 L/(mg.m), showed that the organic compounds in different source waters exhibited different reactivities with chlorine. The HAA7FP of source waters ranged from 20 to 448 μg/L and the THMFP ranged from 29 to 259 μg/L. The HAA7FP concentrations were higher than the THMFP concentrations in all but one of the samples. Therefore, the risks of haloacetic acids (HAAs) should be of concern in some source waters. TCM (chloroform) and BDCM (bromodichloromethane) were the major THM constituents, while TCAA (trichloroacetic acid) and DCAA (dichloroacetic acid) were the major HAA species. Br-THM (brominated THM species) were much higher than Br- HAA (brominated HAA species), and the formation of Br-DBP (Br-THM and Br-HAA) should be of concern when the bromide concentration is over 100 μg/L.
基金Sponsored by Science and Technology Research Funds of Liaoning Provincial Education Department of China(L2012082)
文摘Considerable energy is consumed during steel manufacturing process. Byproduct gas emerges as secondary energy in the process; however, it is also an atmospheric pollution source if it is released into the air. Therefore, the optimal utilization of byproduct gas not only saves energy but also protects environment. To solve this issue, a fore- cast model of gas supply, gas demand and surplus gas in a steel plant was proposed. With the progress of energy conservation, the amount of surplus gas was very large. In a steel plant, the surplus gas was usually sent to boilers to generate steam. However, each boiler had an individual efficiency. So the optimization of the utilization of surplus gas in boilers was a key topic. A dynamic programming method was used to develop an optimal utilization strategy for surplus gas. Finally, a case study providing a sound confirmation was given.