In the present paper we first obtain the comparison principle for the nonlinear stochastic differentialdelay equations with Markovian switching. Later, using this comparison principle, we obtain some stabilitycriteria...In the present paper we first obtain the comparison principle for the nonlinear stochastic differentialdelay equations with Markovian switching. Later, using this comparison principle, we obtain some stabilitycriteria, including stability in probability, asymptotic stability in probability, stability in the pth mean, asymptoticstability in the pth mean and the pth moment exponential stability of such equations. Finally, an example isgiven to illustrate the effectiveness of our results.展开更多
Let B^Hi,Ki ={ Bt^Hi,Ki, t ≥ 0}, i= 1, 2 be two independent bifractional Brownian motions with respective indices Hi ∈ (0, 1) and K∈ E (0, 1]. One of the main motivations of this paper is to investigate f0^Tδ...Let B^Hi,Ki ={ Bt^Hi,Ki, t ≥ 0}, i= 1, 2 be two independent bifractional Brownian motions with respective indices Hi ∈ (0, 1) and K∈ E (0, 1]. One of the main motivations of this paper is to investigate f0^Tδ(Bs^H1 ,K1 - the smoothness of the collision local time, introduced by Jiang and Wang in 2009, IT = f0^T δ(Bs^H1,K1)ds, T 〉 0, where 6 denotes the Dirac delta function. By an elementary method, we show that iT is smooth in the sense of the Meyer-Watanabe if and only if min{H-1K1, H2K2} 〈-1/3.展开更多
基金This work was supported by the National Natural Science Foundation of China (Grant No. 10171009) Tianyuan Young Fund of China (Grant No. 10226009).
文摘In the present paper we first obtain the comparison principle for the nonlinear stochastic differentialdelay equations with Markovian switching. Later, using this comparison principle, we obtain some stabilitycriteria, including stability in probability, asymptotic stability in probability, stability in the pth mean, asymptoticstability in the pth mean and the pth moment exponential stability of such equations. Finally, an example isgiven to illustrate the effectiveness of our results.
基金supported by National Natural Science Foundation of China (Grant No.10871041)Key Natural Science Foundation of Anhui Educational Committee (Grant No. KJ2011A139)
文摘Let B^Hi,Ki ={ Bt^Hi,Ki, t ≥ 0}, i= 1, 2 be two independent bifractional Brownian motions with respective indices Hi ∈ (0, 1) and K∈ E (0, 1]. One of the main motivations of this paper is to investigate f0^Tδ(Bs^H1 ,K1 - the smoothness of the collision local time, introduced by Jiang and Wang in 2009, IT = f0^T δ(Bs^H1,K1)ds, T 〉 0, where 6 denotes the Dirac delta function. By an elementary method, we show that iT is smooth in the sense of the Meyer-Watanabe if and only if min{H-1K1, H2K2} 〈-1/3.