期刊文献+

Smoothness for the collision local times of bifractional Brownian motions 被引量:12

Smoothness for the collision local times of bifractional Brownian motions
原文传递
导出
摘要 Let B^Hi,Ki ={ Bt^Hi,Ki, t ≥ 0}, i= 1, 2 be two independent bifractional Brownian motions with respective indices Hi ∈ (0, 1) and K∈ E (0, 1]. One of the main motivations of this paper is to investigate f0^Tδ(Bs^H1 ,K1 - the smoothness of the collision local time, introduced by Jiang and Wang in 2009, IT = f0^T δ(Bs^H1,K1)ds, T 〉 0, where 6 denotes the Dirac delta function. By an elementary method, we show that iT is smooth in the sense of the Meyer-Watanabe if and only if min{H-1K1, H2K2} 〈-1/3. Let BHi,Ki={BtHi,Ki,t≥0},i=1,2 be two independent bifractional Brownian motions with respective indices H i ∈(0,1) and K i ∈(0,1].One of the main motivations of this paper is to investigate the smoothness of the collision local time,introduced by Jiang and Wang in 2009,lT = integral(δ(BsH1,K1-BsH2,K2)ds) from n=0 to T,T > 0,where δ denotes the Dirac delta function.By an elementary method,we show that T is smooth in the sense of the Meyer-Watanabe if and only if min{H1K1,H2K2} <1/3.
出处 《Science China Mathematics》 SCIE 2011年第9期1859-1873,共15页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China (Grant No.10871041) Key Natural Science Foundation of Anhui Educational Committee (Grant No. KJ2011A139)
关键词 bifractional Brownian motion collision local time intersection local time chaos expansion 布朗运动 平滑度 碰撞 时间 江泽民 Tgt c函数 BS
  • 相关文献

参考文献3

二级参考文献13

  • 1JIANG YiMing,WANG YongJin.Self-intersection local times and collision local times of bifractional Brownian motions[J].Science China Mathematics,2009,52(9):1905-1919. 被引量:12
  • 2Yiming JIANG,Yongjin WANG.On the Collision Local Time of Fractional Brownian Motions[J].Chinese Annals of Mathematics,Series B,2007,28(3):311-320. 被引量:11
  • 3Rosen, J., The intersection local time of fractional Brownian motion in the plane, J. Multivariate Anal., 23(1), 1987, 37-46. 被引量:1
  • 4Nualaxt, D. and Vives, J., Chaos expansion and local time, Publ. Mat., 36(2), 1992, 827-836. 被引量:1
  • 5Imkeller, P., Abreu, V. and Vives, J., Chaos expansions of double intersection local time of Brownian motion in R^d and renormalization, Stoch Process. Appl., 56, 1995, 1-34. 被引量:1
  • 6Hu, Y. Z., Self-intersection of fractional Brownian motions -- via chaos expansion, J. Math Kyoto Univ., 41(2), 2001, 233-250. 被引量:1
  • 7Hu, Y. Z. and Nualart, D., Renormalized Self-intersection local time for fractional Brownian motion, Ann. Prob., 33(3), 2005, 948-983. 被引量:1
  • 8Xiao, Y. M. and Zhang, T. S., Local time of fractional Brownian sheets, Probab. Theory Relat. Fields, 124, 2002, 121-139. 被引量:1
  • 9Simon, B., The P(ф)2 Euclidean Field Theory, Princeton University Press, Princeton, New Jersey, 1974. 被引量:1
  • 10Meyer, P. A., Quantum for Probabilists, Lecture Notes in Mathematics, 1538, Springer, Heidelberg, 1993. 被引量:1

共引文献16

同被引文献55

引证文献12

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部