Motor imagery is the mental representation of an action without overt movement or muscle activation. However, the effects of motor imagery on stroke-induced hand dysfunction and brain neural networks are still unknown...Motor imagery is the mental representation of an action without overt movement or muscle activation. However, the effects of motor imagery on stroke-induced hand dysfunction and brain neural networks are still unknown. We conducted a randomized controlled trial in the China Rehabilitation Research Center. Twenty stroke patients, including 13 males and 7 females, 32–51 years old, were recruited and randomly assigned to the traditional rehabilitation treatment group(PP group, n = 10) or the motor imagery training combined with traditional rehabilitation treatment group(MP group, n = 10). All patients received rehabilitation training once a day, 45 minutes per session, five times per week, for 4 consecutive weeks. In the MP group, motor imagery training was performed for 45 minutes after traditional rehabilitation training, daily. Action Research Arm Test and the Fugl-Meyer Assessment of the upper extremity were used to evaluate hand functions before and after treatment. Transcranial magnetic stimulation was used to analyze motor evoked potentials in the affected extremity. Diffusion tensor imaging was used to assess changes in brain neural networks. Compared with the PP group, the MP group showed better recovery of hand function, higher amplitude of the motor evoked potential in the abductor pollicis brevis, greater fractional anisotropy of the right dorsal pathway, and an increase in the fractional anisotropy of the bilateral dorsal pathway. Our findings indicate that 4 weeks of motor imagery training combined with traditional rehabilitation treatment improves hand function in stroke patients by enhancing the dorsal pathway. This trial has been registered with the Chinese Clinical Trial Registry(registration number: Chi CTR-OCH-12002238).展开更多
将网络信息的概念引入到神经科学当中对于研究脑功能机制有着积极的作用。然而人脑网络的复杂性对于理解有一定的困难。该文基于有向传递函数(Directed Transfer Function,DTF)的方法估计得到功能连接模式,进一步提出了信息流增益的计...将网络信息的概念引入到神经科学当中对于研究脑功能机制有着积极的作用。然而人脑网络的复杂性对于理解有一定的困难。该文基于有向传递函数(Directed Transfer Function,DTF)的方法估计得到功能连接模式,进一步提出了信息流增益的计算方法,用以评价特定脑区在全脑信息传输过程中的作用。该方法将流入信息和流出信息结合,具有浓缩两者信息的优点,简化了脑复杂网络的辨识度,并且提高了结果的显示标度。仿真运算和自发、诱发脑电数据的结果都显示出通过计算分析信息流增益可以比较理想地得到各个脑区对全脑信息流的贡献。结果证明信息流增益方法为进一步理解大脑认知机制提供了可能。展开更多
基金supported by the National Natural Science Foundation of China,No.U1613228a grant from the Sub-Project under National “Twelfth Five-Year” Plan for Science & Technology Support Project in China,No.2011BAI08B11+1 种基金a grant from the Beijing Municipal Science & Technology Commission in China,No.Z161100002616018the Special Fund for Basic Scientific Research Business of Central Public Scientific Research Institutes in China,No.2014CZ-5,2015CZ-30
文摘Motor imagery is the mental representation of an action without overt movement or muscle activation. However, the effects of motor imagery on stroke-induced hand dysfunction and brain neural networks are still unknown. We conducted a randomized controlled trial in the China Rehabilitation Research Center. Twenty stroke patients, including 13 males and 7 females, 32–51 years old, were recruited and randomly assigned to the traditional rehabilitation treatment group(PP group, n = 10) or the motor imagery training combined with traditional rehabilitation treatment group(MP group, n = 10). All patients received rehabilitation training once a day, 45 minutes per session, five times per week, for 4 consecutive weeks. In the MP group, motor imagery training was performed for 45 minutes after traditional rehabilitation training, daily. Action Research Arm Test and the Fugl-Meyer Assessment of the upper extremity were used to evaluate hand functions before and after treatment. Transcranial magnetic stimulation was used to analyze motor evoked potentials in the affected extremity. Diffusion tensor imaging was used to assess changes in brain neural networks. Compared with the PP group, the MP group showed better recovery of hand function, higher amplitude of the motor evoked potential in the abductor pollicis brevis, greater fractional anisotropy of the right dorsal pathway, and an increase in the fractional anisotropy of the bilateral dorsal pathway. Our findings indicate that 4 weeks of motor imagery training combined with traditional rehabilitation treatment improves hand function in stroke patients by enhancing the dorsal pathway. This trial has been registered with the Chinese Clinical Trial Registry(registration number: Chi CTR-OCH-12002238).
文摘将网络信息的概念引入到神经科学当中对于研究脑功能机制有着积极的作用。然而人脑网络的复杂性对于理解有一定的困难。该文基于有向传递函数(Directed Transfer Function,DTF)的方法估计得到功能连接模式,进一步提出了信息流增益的计算方法,用以评价特定脑区在全脑信息传输过程中的作用。该方法将流入信息和流出信息结合,具有浓缩两者信息的优点,简化了脑复杂网络的辨识度,并且提高了结果的显示标度。仿真运算和自发、诱发脑电数据的结果都显示出通过计算分析信息流增益可以比较理想地得到各个脑区对全脑信息流的贡献。结果证明信息流增益方法为进一步理解大脑认知机制提供了可能。