期刊文献+

基于认知功能连接的信息流增益计算方法及应用 被引量:6

The Flow Gain Methods and Applications Based on Cognition Functional Connectivity
下载PDF
导出
摘要 将网络信息的概念引入到神经科学当中对于研究脑功能机制有着积极的作用。然而人脑网络的复杂性对于理解有一定的困难。该文基于有向传递函数(Directed Transfer Function,DTF)的方法估计得到功能连接模式,进一步提出了信息流增益的计算方法,用以评价特定脑区在全脑信息传输过程中的作用。该方法将流入信息和流出信息结合,具有浓缩两者信息的优点,简化了脑复杂网络的辨识度,并且提高了结果的显示标度。仿真运算和自发、诱发脑电数据的结果都显示出通过计算分析信息流增益可以比较理想地得到各个脑区对全脑信息流的贡献。结果证明信息流增益方法为进一步理解大脑认知机制提供了可能。 It has a positive effect on the research of brain function to introduce the concept of network into neuroscience. However, in the real application the brain network with complex characteristics makes it hard to understand. In this paper, based on the functional connectivity patterns estimated by the Directed Transfer Function (DTF) methods, flow gain is proposed to assess the role of the specific brain region involved in the information transmission process. Integrating input and output information simultaneously, flow gain simplifies the identification of complex networks, as well as improves the display scale of the results. Both the simulation and spontaneous, evoked ElectroEncephaloGram (EEG) data indicate that flow gain can describe the output intensity of specific region to the whole brain. The results prove that with the definition of flow gain, it is possible to further the understanding of brain cognitive mechanism.
出处 《电子与信息学报》 EI CSCD 北大核心 2014年第11期2756-2761,共6页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61203369)资助课题
关键词 脑神经网络 认知功能连接 有向传递函数 信息流增益 Brain neural network Cognition functional connectivity Directed Transfer Function (DTF) Information flow gain
  • 相关文献

参考文献20

  • 1Spreng R N, Sepulcre J, Gary R, et al.. Intrinsic architecture underlying the relations among the default, dorsal attention, and frontoparietal control networks of the human brain[J]. Journal of Cognitive Neuroscience, 2013, 25(1): 74-86. 被引量:1
  • 2Richiardi J, Achard S, Bunke H, et al.. Machine learning with brain graphs: predictive modeling approaches for functional imaging in systems neuroscience[J]. IEEE Signal Processing Magazine, 2013, 30(3): 58-70. 被引量:1
  • 3Lee L, Harrison L, and Mechelli A. The functional brain connectivity workshop: report and commentary[J]. NeuroImage, 2003, 19(2): 457-465. 被引量:1
  • 4Betty M, Tijms, Wink A M, et al.. Alzheimer’s disease: connecting findings from graph theoretical studies of brain networks[J]. Neurobiology of Aging, 2013, 34(8): 2023-2036. 被引量:1
  • 5Rah J C, Bas E, Colonell J, et al.. Thalamocortical input onto layer 5 pyramidal neurons measured using quantitative large-scale array tomography[J]. Front Neural Circuits, 2013, 7(177): 1-16. 被引量:1
  • 6Bartels A and Zeki S. Functional brain mapping during free viewing of natural scenes[J]. Hum Brain Mapping, 2004, 21(2): 75-85. 被引量:1
  • 7Gazzaniga M S, Ivry R B, and Mangun G R. Cognitive Neuroscience: the Biology of the Mind[M]. New York: W. W. Norton & Company, 1998: 427. 被引量:1
  • 8Babiloni F. From the analysis of the brain images to the study of brain networks using functional connectivity and multimodal brain signals[J]. Brain Topography, 2010, 23(2): 115-118. 被引量:1
  • 9Strogatz S H. Exploring complex network[J]. Nature, 2001, 410: 268-276. 被引量:1
  • 10Kaminski M and Blinowska K. A new method of the description of the information flow in the brain structures[J]. Biological Cybernetics, 1991, 65(3): 203-210. 被引量:1

同被引文献60

  • 1缪鸿石.中枢神经系统(CNS)损伤后功能恢复的理论(一)[J].中国康复理论与实践,1995,1(1):1-4. 被引量:175
  • 2王东,李秀艳,孙延超.心算认知过程的脑事件相关电位变化[J].中国组织工程研究与临床康复,2007,11(9):1738-1741. 被引量:5
  • 3Wolpaw JR, Birbaumer N, McFarland J, et al. Brain-computer interfaces for communication and control [ J ]. Clin Neurephysiol, 2002, 113 (6) :767 - 791. 被引量:1
  • 4Vaughan TM, McFarland DJ, Schalk G, et al. The wadsworth BCI research and development program: at home with BCI [ J]. IEEE Trans Neural Syst Rehabil Eng, 2006, 14 (2) : 299 -233. 被引量:1
  • 5Leuthardt EC, Schalk G, Wolpaw JR, et al. A brain-computer interface using electroeorticographic signals in humans [ J]. J Neural Eng, 2004, 1(2) : 63 -71. 被引量:1
  • 6Kennedy PR, Bakay RA, Moore MM, et al. Direct control of a computer from the human central nervous system [ J ]. IEEE Trans Rehabil Eng, 2000, 8(2) : 198 -202. 被引量:1
  • 7Kennedy PR, Bakay RA. Restoration of neural output from a paralyzed patient by a direct brain connection [ J]. Neuroreport, 1998, 9(8) : 1707 -1711. 被引量:1
  • 8Wessberg J, Stambaugh CR, Kralik JD, et al. Real-time prediction of hand trajectory by ensembles of cortical neurons in primates [J]. Nature, 2000, 408(6810): 367-371. 被引量:1
  • 9Pfurtscheller G, Muller GR, Pfurtscheller J, et al. ' Thought'- control of functional electrical stimulation to restore hand grasp in a patient with tetraplegia [ J]. Neuroscience Letters, 2003, 351 (1): 33-36. 被引量:1
  • 10Daly JJ, Wolpaw JR. Brain-computer interfaces in neurologicalrehabilitation E J ]. Lancet Neurol, 2008, 7 ( 11 ) : 1032 - 1043. 被引量:1

引证文献6

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部