Combination of topology optimization and additive manufacturing technologies provides an effective approach for the development of light-weight and high-performance structures.A heavy-loaded aerospace bracket is desig...Combination of topology optimization and additive manufacturing technologies provides an effective approach for the development of light-weight and high-performance structures.A heavy-loaded aerospace bracket is designed by topology optimization and manufactured by additive manufacturing technology in this work.Considering both mechanical forces and temperature loads,a formulation of thermo-elastic topology optimization is firstly proposed and the sensitivity analysis is derived in detail.Then the procedure of numerical optimization design is presented and the final design is additively manufactured using Selective Laser Melting(SLM).The mass of the aerospace bracket is reduced by over 18%,benefiting from topology and size optimization,and the three constraints are satisfied as well in the final design.This work indicates that the integration of thermo-elastic topology optimization and additive manufacturing technologies can be a rather powerful tool kit for the design of structures under thermal-mechanical loading.展开更多
The main purpose of this paper is to provide a systematic geometric frame for generalized controlled Hamiltonian systems. The pseudo-Poisson manifold and the ω-manifold are proposed as the statespace of the generaliz...The main purpose of this paper is to provide a systematic geometric frame for generalized controlled Hamiltonian systems. The pseudo-Poisson manifold and the ω-manifold are proposed as the statespace of the generalized controlled Hamiltonian systems. A Lie group, calledN-group, and its Lie algebra, calledN-algebra, are introduced for the structure analysis of the systems. Some properties, including spectrum, structure-preservation, etc. are investigated. As an example the theoretical results are applied to power systems. The stabilization of excitation systems is investigated.展开更多
基金supported by the National Key Research and Development Program of China(Nos.2017YFB1102800,2016YFB0201600)the National Natural Science Foundation of China(Nos.11672239,51735005)。
文摘Combination of topology optimization and additive manufacturing technologies provides an effective approach for the development of light-weight and high-performance structures.A heavy-loaded aerospace bracket is designed by topology optimization and manufactured by additive manufacturing technology in this work.Considering both mechanical forces and temperature loads,a formulation of thermo-elastic topology optimization is firstly proposed and the sensitivity analysis is derived in detail.Then the procedure of numerical optimization design is presented and the final design is additively manufactured using Selective Laser Melting(SLM).The mass of the aerospace bracket is reduced by over 18%,benefiting from topology and size optimization,and the three constraints are satisfied as well in the final design.This work indicates that the integration of thermo-elastic topology optimization and additive manufacturing technologies can be a rather powerful tool kit for the design of structures under thermal-mechanical loading.
文摘The main purpose of this paper is to provide a systematic geometric frame for generalized controlled Hamiltonian systems. The pseudo-Poisson manifold and the ω-manifold are proposed as the statespace of the generalized controlled Hamiltonian systems. A Lie group, calledN-group, and its Lie algebra, calledN-algebra, are introduced for the structure analysis of the systems. Some properties, including spectrum, structure-preservation, etc. are investigated. As an example the theoretical results are applied to power systems. The stabilization of excitation systems is investigated.