Boron neutron capture therapy(BNCT)is a potential radiation therapy modality for cancer,and tumortargeted stable boron-10(10B)delivery agents are an important component of BNCT.Currently,two low-molecular-weight boron...Boron neutron capture therapy(BNCT)is a potential radiation therapy modality for cancer,and tumortargeted stable boron-10(10B)delivery agents are an important component of BNCT.Currently,two low-molecular-weight boron-containing compounds,sodium mercaptoundecahydrocloso-dodecaborate(BSH)and boronophenylalanine(BPA),are mainly used in BNCT.Although both have suboptimal tumor selectivity,they have shown some therapeutic benefit in patients with high-grade glioma and several other tumors.To improve the efficacy of BNCT,great efforts have been devoted for the development of new boron delivery agents with better uptake and favorable pharmacokinetic profiles.This article reviews the application and research progress of boron nanomaterials as boron carriers in boron neutron capture therapy and hopes to stimulate people’s interest in nanomaterial-based delivery agents by summarizing various kinds of boron nanomaterial patents disclosed in the past decade.展开更多
Cubic boron arsenide(BAs)has attracted great attention due to its high thermal conductivity,however,its controllable,stable,and ideal preparation remains challenging.Herein,we investigated the effect of iodine-contain...Cubic boron arsenide(BAs)has attracted great attention due to its high thermal conductivity,however,its controllable,stable,and ideal preparation remains challenging.Herein,we investigated the effect of iodine-containing transport agents I_(2) and boron triiodide(BI_(3))on BAs synthesized and grown through chemical vapor transport.Results show that similar to the commonly used I_(2),BI_(3) accelerates the synthesis and improves the mass fraction of BAs from ~12% to over 90% at 820℃ and 1.5 MPa,a value beyond the promoting effect of only increasing temperature and pressure.Both agents enhance the quality of BAs crystals by reducing the full width at half maximum by up to 10%-20%.I_(2) agglomerates the grown crystals with twin defects(~50 nm wide),and BI_(3) improves the crystal anisotropy and element uniformity of BAs crystals with narrow twins(~15 nm wide)and increases the stoichiometry ratio(~0.990)to almost 1.Owing to the boron interstitials from the excessive boron supply,the spacing of layers in {111} increases to 0.286 nm in the presence of I_(2).Owing to its coordinated effect,BI_(3) only slightly influences the layer spacing at 0.275 nm,which is close to the theoretical value of 0.276 nm.In the chemical vapor transport,the anisotropic crystals with flat surfaces exhibit single-crystal characteristics under the action of BI_(3).Different from that of I_(2),the coordinated effect of BI_(3) can promote the efficient preparation of high-quality BAs crystal seeds and facilitate the advanced application of BAs.展开更多
Adenosine triphosphate(ATP)borate ester as a new boron agent for boron neutron capture therapy was tested.It was synthesized via a dehydration reaction induced by heating adenosine triphosphate disodium with boric aci...Adenosine triphosphate(ATP)borate ester as a new boron agent for boron neutron capture therapy was tested.It was synthesized via a dehydration reaction induced by heating adenosine triphosphate disodium with boric acid.Next,ATP borate ester pretreatments were assessed to study their effects on cell sensitization from exposure to thermal neutron irradiation emitted by a nuclear reactor.Using cell viability assays(CCK8),survival rates of A549 cells pretreated with or without boroncontaining agents,including ATP borate ester and 4-dihydroxyborylphenylalanine(BPA),were measured.One week after feeding an ATP borate ester solution to tumorbearing nude mice,elemental B content values of tumor muscle and blood were measured using inductively coupled plasma mass spectrometry(ICP-MS).Meanwhile,other tumor tissue samples were placed in a culture medium,subjected to a 3-min neutron irradiation exposure,and then fixed in formalin 24 h later for the terminaldeoxynucleotidyl transferase(TDT)-mediated d UTP nick end labeling(TUNEL)immunohistochemical staining analysis.Results showed that A549 cell irradiation sensitization(irradiation dose of 0.33 Gy)varied with pretreatment.Sensitization values of the ATP borate ester pretreatment group were 1.3–14.1 with boron agent concentrations of 0.3–4.5 mM.Within 1.1–3.4 mM,ATP borate ester showed significantly higher sensitization values than BPA.Meanwhile,TUNEL results demonstrated that apoptosis rates of tumor tissue cells exposed to irradiation after ATP borate ester pretreatment significantly exceeded the corresponding rates for BPA-pretreated cells.In animal experiments,although the distribution ratio of ATP borate ester(tumor tissue/normal muscle,T/N)of 1.2 was not significantly different compared with that of BPA(1.3),the total ATP borate ester concentration in the tumor tissue(0.79±0.05μg/g)significantly exceeded that of BPA(0.58±0.05μg/g).Thus,compared with BPA,the greater enrichment of ATP borate ester in tumor tissues permits preferential targeting toward tumor cells展开更多
文摘Boron neutron capture therapy(BNCT)is a potential radiation therapy modality for cancer,and tumortargeted stable boron-10(10B)delivery agents are an important component of BNCT.Currently,two low-molecular-weight boron-containing compounds,sodium mercaptoundecahydrocloso-dodecaborate(BSH)and boronophenylalanine(BPA),are mainly used in BNCT.Although both have suboptimal tumor selectivity,they have shown some therapeutic benefit in patients with high-grade glioma and several other tumors.To improve the efficacy of BNCT,great efforts have been devoted for the development of new boron delivery agents with better uptake and favorable pharmacokinetic profiles.This article reviews the application and research progress of boron nanomaterials as boron carriers in boron neutron capture therapy and hopes to stimulate people’s interest in nanomaterial-based delivery agents by summarizing various kinds of boron nanomaterial patents disclosed in the past decade.
基金financially supported by the National Key R&D Program of China(Nos.2018YFC1900302 and 2020YFC1909201)the National Science Fund for Distinguished Young Scholars(No.51825403)。
文摘Cubic boron arsenide(BAs)has attracted great attention due to its high thermal conductivity,however,its controllable,stable,and ideal preparation remains challenging.Herein,we investigated the effect of iodine-containing transport agents I_(2) and boron triiodide(BI_(3))on BAs synthesized and grown through chemical vapor transport.Results show that similar to the commonly used I_(2),BI_(3) accelerates the synthesis and improves the mass fraction of BAs from ~12% to over 90% at 820℃ and 1.5 MPa,a value beyond the promoting effect of only increasing temperature and pressure.Both agents enhance the quality of BAs crystals by reducing the full width at half maximum by up to 10%-20%.I_(2) agglomerates the grown crystals with twin defects(~50 nm wide),and BI_(3) improves the crystal anisotropy and element uniformity of BAs crystals with narrow twins(~15 nm wide)and increases the stoichiometry ratio(~0.990)to almost 1.Owing to the boron interstitials from the excessive boron supply,the spacing of layers in {111} increases to 0.286 nm in the presence of I_(2).Owing to its coordinated effect,BI_(3) only slightly influences the layer spacing at 0.275 nm,which is close to the theoretical value of 0.276 nm.In the chemical vapor transport,the anisotropic crystals with flat surfaces exhibit single-crystal characteristics under the action of BI_(3).Different from that of I_(2),the coordinated effect of BI_(3) can promote the efficient preparation of high-quality BAs crystal seeds and facilitate the advanced application of BAs.
基金supported by the project,‘‘Research on the targeted treatment of malignant tumors with Base 20180199 New Transmembrane Antibody’’(No.JCYJ20180507182217748)the National Natural Science Foundation of China(No.11375117)
文摘Adenosine triphosphate(ATP)borate ester as a new boron agent for boron neutron capture therapy was tested.It was synthesized via a dehydration reaction induced by heating adenosine triphosphate disodium with boric acid.Next,ATP borate ester pretreatments were assessed to study their effects on cell sensitization from exposure to thermal neutron irradiation emitted by a nuclear reactor.Using cell viability assays(CCK8),survival rates of A549 cells pretreated with or without boroncontaining agents,including ATP borate ester and 4-dihydroxyborylphenylalanine(BPA),were measured.One week after feeding an ATP borate ester solution to tumorbearing nude mice,elemental B content values of tumor muscle and blood were measured using inductively coupled plasma mass spectrometry(ICP-MS).Meanwhile,other tumor tissue samples were placed in a culture medium,subjected to a 3-min neutron irradiation exposure,and then fixed in formalin 24 h later for the terminaldeoxynucleotidyl transferase(TDT)-mediated d UTP nick end labeling(TUNEL)immunohistochemical staining analysis.Results showed that A549 cell irradiation sensitization(irradiation dose of 0.33 Gy)varied with pretreatment.Sensitization values of the ATP borate ester pretreatment group were 1.3–14.1 with boron agent concentrations of 0.3–4.5 mM.Within 1.1–3.4 mM,ATP borate ester showed significantly higher sensitization values than BPA.Meanwhile,TUNEL results demonstrated that apoptosis rates of tumor tissue cells exposed to irradiation after ATP borate ester pretreatment significantly exceeded the corresponding rates for BPA-pretreated cells.In animal experiments,although the distribution ratio of ATP borate ester(tumor tissue/normal muscle,T/N)of 1.2 was not significantly different compared with that of BPA(1.3),the total ATP borate ester concentration in the tumor tissue(0.79±0.05μg/g)significantly exceeded that of BPA(0.58±0.05μg/g).Thus,compared with BPA,the greater enrichment of ATP borate ester in tumor tissues permits preferential targeting toward tumor cells