目前,文本分类的研究主要集中在通过优化文本分类器来增强分类性能。然而,标签和文本之间的联系并没有得到很好的利用。尽管BERT对文本特征的处理表现出了非常好的效果,但对文本和标签的特征提取还有一定的提升空间。文中通过结合标签...目前,文本分类的研究主要集中在通过优化文本分类器来增强分类性能。然而,标签和文本之间的联系并没有得到很好的利用。尽管BERT对文本特征的处理表现出了非常好的效果,但对文本和标签的特征提取还有一定的提升空间。文中通过结合标签混淆模型(Label Confusion Model,LCM),提出一种基于BERT和LCM的文本分类模型(Model Based on BERT and Label Confusion,BLC),对文本和标签的特征进一步做了处理。充分利用BERT每一层的句向量和最后一层的词向量,结合双向长短时记忆网络(Bi-LSTM)得到文本表示,来替代BERT原始的文本特征表示。标签在进入LCM之前,使用自注意力网络和Bi-LSTM提高标签之间相互依赖关系,从而提高最终的分类性能。在4个文本分类基准数据集上的实验结果证明了所提模型的有效性。展开更多
事件时序关系抽取是一项重要的自然语言理解任务,可以广泛应用于诸如知识图谱构建、问答系统等任务.已有事件时序关系抽取方法往往将该任务视为句子级事件对的分类问题,而基于有限的局部句子信息导致其抽取的事件时序关系的精度较低,且...事件时序关系抽取是一项重要的自然语言理解任务,可以广泛应用于诸如知识图谱构建、问答系统等任务.已有事件时序关系抽取方法往往将该任务视为句子级事件对的分类问题,而基于有限的局部句子信息导致其抽取的事件时序关系的精度较低,且无法保证整体时序关系的全局一致性.针对此问题,提出一种融合上下文信息的篇章级事件时序关系抽取方法,使用基于双向长短期记忆(bidirectional long short-term memory,Bi-LSTM)的神经网络模型学习文章中事件对的时序关系表示,再利用自注意力机制融入上下文中其他事件对信息,从而得到更丰富的事件对时序关系表示用于时序关系分类.通过TB-Dense(timebank dense)和MATRES(multi-axis temporal relations for start-points)数据集的实验表明:此方法能够取得比当前主流的句子级方法更佳的抽取效果.展开更多
受自然环境、计量仪器等影响,量测数据会出现异常,导致调度人员错误决策,威胁电力系统安全稳定运行。为保障电力系统安全稳定运行,提出了一种基于双向长短期记忆(bidirectional long short-term memory,Bi-LSTM)神经网络的配网电压无监...受自然环境、计量仪器等影响,量测数据会出现异常,导致调度人员错误决策,威胁电力系统安全稳定运行。为保障电力系统安全稳定运行,提出了一种基于双向长短期记忆(bidirectional long short-term memory,Bi-LSTM)神经网络的配网电压无监督异常数据检测方法。利用Bi-LSTM神经网络处理时序数据的双向特性,建立时序预测模型,通过对比预测值和实际值的误差检测异常数据。最后,基于某实际配网电压数据进行仿真验证,仿真结果表明:所提方法在准确率、F1分数等指标方面均优于决策树、K近邻、支持向量机、长短期记忆(long short-term memory,LSTM)神经网络。展开更多
随着社交网络的兴起,更多人选择在网络上发表自己对影视作品的观点,这为影视投资人了解观众对电影的反馈提供了更方便的途径.例如,豆瓣影评中包含了海量用户或积极或消极的情感观点,而分析豆瓣影评的情感倾向能够辅助投资人进行决策,提...随着社交网络的兴起,更多人选择在网络上发表自己对影视作品的观点,这为影视投资人了解观众对电影的反馈提供了更方便的途径.例如,豆瓣影评中包含了海量用户或积极或消极的情感观点,而分析豆瓣影评的情感倾向能够辅助投资人进行决策,提升作品质量.大量数据分析必须借助计算机技术手段完成,其中情感分析是自然语言处理(natural language processing, NLP)的一个方向,常用来分析判断文本描述的情绪类型,因此也被称为情感倾向分析.为了提高影评情感分类的准确率,设置了多组对比实验来选择最优参数,比较了当以中文字符向量和词向量为输入矩阵时,双向长短期记忆(bidirectional long short-term memory,Bi-LSTM)模型和卷积神经网络(convolutional neural network, CNN)模型对分类准确率的影响.提出了一种以CNN模型为弱分类器的Bagging算法,训练了多个CNN模型,并采用投票法决定最终的分类结果.这种集成的方法减少了单个模型造成的分类偏差,比单一的Bi-LSTM模型的分类准确率提高了5.10%,比单一的CNN模型的分类准确率提高了1.34%.展开更多
文摘目前,文本分类的研究主要集中在通过优化文本分类器来增强分类性能。然而,标签和文本之间的联系并没有得到很好的利用。尽管BERT对文本特征的处理表现出了非常好的效果,但对文本和标签的特征提取还有一定的提升空间。文中通过结合标签混淆模型(Label Confusion Model,LCM),提出一种基于BERT和LCM的文本分类模型(Model Based on BERT and Label Confusion,BLC),对文本和标签的特征进一步做了处理。充分利用BERT每一层的句向量和最后一层的词向量,结合双向长短时记忆网络(Bi-LSTM)得到文本表示,来替代BERT原始的文本特征表示。标签在进入LCM之前,使用自注意力网络和Bi-LSTM提高标签之间相互依赖关系,从而提高最终的分类性能。在4个文本分类基准数据集上的实验结果证明了所提模型的有效性。
文摘事件时序关系抽取是一项重要的自然语言理解任务,可以广泛应用于诸如知识图谱构建、问答系统等任务.已有事件时序关系抽取方法往往将该任务视为句子级事件对的分类问题,而基于有限的局部句子信息导致其抽取的事件时序关系的精度较低,且无法保证整体时序关系的全局一致性.针对此问题,提出一种融合上下文信息的篇章级事件时序关系抽取方法,使用基于双向长短期记忆(bidirectional long short-term memory,Bi-LSTM)的神经网络模型学习文章中事件对的时序关系表示,再利用自注意力机制融入上下文中其他事件对信息,从而得到更丰富的事件对时序关系表示用于时序关系分类.通过TB-Dense(timebank dense)和MATRES(multi-axis temporal relations for start-points)数据集的实验表明:此方法能够取得比当前主流的句子级方法更佳的抽取效果.
文摘随着社交网络的兴起,更多人选择在网络上发表自己对影视作品的观点,这为影视投资人了解观众对电影的反馈提供了更方便的途径.例如,豆瓣影评中包含了海量用户或积极或消极的情感观点,而分析豆瓣影评的情感倾向能够辅助投资人进行决策,提升作品质量.大量数据分析必须借助计算机技术手段完成,其中情感分析是自然语言处理(natural language processing, NLP)的一个方向,常用来分析判断文本描述的情绪类型,因此也被称为情感倾向分析.为了提高影评情感分类的准确率,设置了多组对比实验来选择最优参数,比较了当以中文字符向量和词向量为输入矩阵时,双向长短期记忆(bidirectional long short-term memory,Bi-LSTM)模型和卷积神经网络(convolutional neural network, CNN)模型对分类准确率的影响.提出了一种以CNN模型为弱分类器的Bagging算法,训练了多个CNN模型,并采用投票法决定最终的分类结果.这种集成的方法减少了单个模型造成的分类偏差,比单一的Bi-LSTM模型的分类准确率提高了5.10%,比单一的CNN模型的分类准确率提高了1.34%.