The exact relationship between the bending solutions of functionally graded material (FGM) beams based on the Levinson beam theory and those of the correspond- ing homogenous beams based on the classical beam theory...The exact relationship between the bending solutions of functionally graded material (FGM) beams based on the Levinson beam theory and those of the correspond- ing homogenous beams based on the classical beam theory is presented for the material properties of the FGM beams changing continuously in the thickness direction. The de- flection, the rotational angle, the bending moment, and the shear force of FGM Levinson beams (FGMLBs) are given analytically in terms of the deflection of the reference ho- mogenous Euler-Bernoulli beams (HEBBs) with the same loading, geometry, and end supports. Consequently, the solution of the bending of non-homogenous Levinson beams can be simplified to the calculation of transition coefficients, which can be easily deter- mined by variation of the gradient of material properties and the geometry of beams. This is because the classical beam theory solutions of homogenous beams can be eas- ily determined or are available in the textbook of material strength under a variety of boundary conditions. As examples, for different end constraints, particular solutions are given for the FGMLBs under specified loadings to illustrate validity of this approach. These analytical solutions can be used as benchmarks to check numerical results in the investigation of static bending of FGM beams based on higher-order shear deformation theories.展开更多
Boundary characteristic orthogonal polynomials are used as shape functions in the Rayleigh–Ritz method to investigate vibration and buckling of nanobeams embedded in an elastic medium. The present formulation is base...Boundary characteristic orthogonal polynomials are used as shape functions in the Rayleigh–Ritz method to investigate vibration and buckling of nanobeams embedded in an elastic medium. The present formulation is based on the nonlocal Euler–Bernoulli beam theory. The eigen value equation is developed for the buckling and vibration analyses. The orthogonal property of these polynomials makes the computation easier with less computational effort. It is observed that the frequency and critical buckling load parameters are dependent on the temperature, elastic medium, small scale coefficient,and length-to-diameter ratio. These observations are useful in the mechanical design of devices that use carbon nanotubes.展开更多
This paper deals with the capabilities of linear and nonlinear beam theories in predicting the dynamic response of an elastically supported thin beam traversed by a moving mass. To this end, the discrete equations of ...This paper deals with the capabilities of linear and nonlinear beam theories in predicting the dynamic response of an elastically supported thin beam traversed by a moving mass. To this end, the discrete equations of motion are developed based on Lagrange's equations via reproducing kernel particle method (RKPM). For a particular case of a simply supported beam, Galerkin method is also employed to verify the results obtained by RKPM, and a reasonably good agreement is achieved. Variations of the maximum dynamic deflection and bending moment associated with the linear and nonlinear beam theories are investigated in terms of moving mass weight and velocity for various beam boundary conditions. It is demonstrated that for majority of the moving mass velocities, the differences between the results of linear and nonlinear analyses become remarkable as the moving mass weight increases, particularly for high levels of moving mass velocity. Except for the cantilever beam, the nonlinear beam theory predicts higher possibility of moving mass separation from the base beam compared to the linear one. Furthermore, the accuracy levels of the linear beam theory are determined for thin beams under large deflections and small rotations as a function of moving mass weight and velocity in various boundary conditions.展开更多
基金supported by the National Natural Science Foundation of China(No.11272278)
文摘The exact relationship between the bending solutions of functionally graded material (FGM) beams based on the Levinson beam theory and those of the correspond- ing homogenous beams based on the classical beam theory is presented for the material properties of the FGM beams changing continuously in the thickness direction. The de- flection, the rotational angle, the bending moment, and the shear force of FGM Levinson beams (FGMLBs) are given analytically in terms of the deflection of the reference ho- mogenous Euler-Bernoulli beams (HEBBs) with the same loading, geometry, and end supports. Consequently, the solution of the bending of non-homogenous Levinson beams can be simplified to the calculation of transition coefficients, which can be easily deter- mined by variation of the gradient of material properties and the geometry of beams. This is because the classical beam theory solutions of homogenous beams can be eas- ily determined or are available in the textbook of material strength under a variety of boundary conditions. As examples, for different end constraints, particular solutions are given for the FGMLBs under specified loadings to illustrate validity of this approach. These analytical solutions can be used as benchmarks to check numerical results in the investigation of static bending of FGM beams based on higher-order shear deformation theories.
文摘Boundary characteristic orthogonal polynomials are used as shape functions in the Rayleigh–Ritz method to investigate vibration and buckling of nanobeams embedded in an elastic medium. The present formulation is based on the nonlocal Euler–Bernoulli beam theory. The eigen value equation is developed for the buckling and vibration analyses. The orthogonal property of these polynomials makes the computation easier with less computational effort. It is observed that the frequency and critical buckling load parameters are dependent on the temperature, elastic medium, small scale coefficient,and length-to-diameter ratio. These observations are useful in the mechanical design of devices that use carbon nanotubes.
文摘This paper deals with the capabilities of linear and nonlinear beam theories in predicting the dynamic response of an elastically supported thin beam traversed by a moving mass. To this end, the discrete equations of motion are developed based on Lagrange's equations via reproducing kernel particle method (RKPM). For a particular case of a simply supported beam, Galerkin method is also employed to verify the results obtained by RKPM, and a reasonably good agreement is achieved. Variations of the maximum dynamic deflection and bending moment associated with the linear and nonlinear beam theories are investigated in terms of moving mass weight and velocity for various beam boundary conditions. It is demonstrated that for majority of the moving mass velocities, the differences between the results of linear and nonlinear analyses become remarkable as the moving mass weight increases, particularly for high levels of moving mass velocity. Except for the cantilever beam, the nonlinear beam theory predicts higher possibility of moving mass separation from the base beam compared to the linear one. Furthermore, the accuracy levels of the linear beam theory are determined for thin beams under large deflections and small rotations as a function of moving mass weight and velocity in various boundary conditions.