Ball spinning is applied to manufacturing thin-walled tube with high precision and high mechanical properties. On the basis of plastic mechanics, by simplifying ball spinning of thin-walled tube as plane strain proble...Ball spinning is applied to manufacturing thin-walled tube with high precision and high mechanical properties. On the basis of plastic mechanics, by simplifying ball spinning of thin-walled tube as plane strain problem, slab method is used for the purpose of calculating the contact deformation pressure. The spinning force components, the torsional moment, the deformation power and the deformation work are calculated further as well. The influence of the two important process parameters such as the feed ratio and the ball diameter on the spinning force components is analyzed in order to further control the spinning force components by regulating the two process variables during the ball spinning process. The stress and strain state in deformable zone as well as mechanics boundary conditions in ball spinning are obtained. The effect of the three spinning force components on the formability of the spun part is analyzed and validated through the ball spinning experiments. The theoretical and experimental results show that the radial spinning component plays a significant role in ball spinning of thin-walled tube, and the mechanics situation in backward ball spinning contributes to enhancing the plasticity of the metal material, but that in forward ball spinning contributes to advancing the axial flow of the metal material.展开更多
This paper develops a five degrees of freedom(5-DOF) model for aeroengine spindle dual-rotor system dynamic analysis.In this system,the dual rotors are supported on two angular contact ball bearings and two deep gro...This paper develops a five degrees of freedom(5-DOF) model for aeroengine spindle dual-rotor system dynamic analysis.In this system,the dual rotors are supported on two angular contact ball bearings and two deep groove ball bearings,one of the latter-mentioned bearings works as the inter-shaft bearing.Driven by respective motors,the dual rotors have different co-rotating speeds.The proposed model mathematically formulates the nonlinear displacements,elastic deflections and contact forces of bearings with consideration of 5-DOF and coupling of dual rotors.The nonlinear equations of motions of dual rotors with 5-DOF are solved using Runge-Kutta-Fehlberg algorithm.In order to investigate the effect of the introduced 5-DOF and nonlinear dy-namic bearing model,we compare the proposed model with two models:the 3-DOF model of this system only considering three translational degrees of freedom(Gupta,1993,rotational freedom is neglected);the 5-DOF model where the deep groove ball bearings are simplified as linear elastic spring(Guskov,2007).The simulation results verify Gupta's prediction(1993) and show that the rotational freedom of rotors and nonlinear dynamic model of bearings have great effect on the system dynamic simula-tion.The quantitative results are given as well.展开更多
Ball bearings play an important role in various rotating machineries,but the complicated kinematic and tribological features of ball bearings make many aspects of their operating behaviors still inconclusive.Most theo...Ball bearings play an important role in various rotating machineries,but the complicated kinematic and tribological features of ball bearings make many aspects of their operating behaviors still inconclusive.Most theoretical analyses of ball bearings up to date are based on either the hypothesis of race control or other empirical models to determine the ball motion of ball bearings,but none of these strategies can reveal and consequently employ the intrinsic coupling mechanism between the spin and the tangential traction of contacting bodies rolling upon one another.To remedy the deficiency of current analytical models for ball bearing analysis,the rolling contact theory is employed to establish an explicit link between motions and interactions within ball bearings.A differential slip model is established to precisely define the slip component due to the significant curvature of the common contact patches between the ball and inner/outer raceways.The creepage and the spin ratio are formulated to accurately define the relative rigid motion between the ball and the inner/outer raceway.Then a quasi-static analytical model is established that can accurately determine the motions of the balls and races of the ball bearing.It can also give a vivid description of the slip and traction distributions within the contact area.The analytical model can be effectively used to analyze the operational conditions and tribological features of solid-lubricated ball bearings.It can also be used optimize the construction of ball bearings for specific applications.展开更多
Some results on convergence of Newton's method in Banach spaces are established under the assumption that the derivative of the operators satisfies the radius or center Lipschitz condition with a weak L average.
Y2O3-doped ZnO-based varistor ceramics were prepared using high-energy ball milling (HEBM) and low-temperature sin- tering technique, with voltage-gradient of 1934-2197 V/mm, non-linear coefficients of 20.8-21.8, le...Y2O3-doped ZnO-based varistor ceramics were prepared using high-energy ball milling (HEBM) and low-temperature sin- tering technique, with voltage-gradient of 1934-2197 V/mm, non-linear coefficients of 20.8-21.8, leakage currents of 0.59-1.04 μA, and densities of 5.46-5.57 g/cm3. With increasing Y2O3 content, the voltage-gradient increases because of the decrease of ZnO grain size; the non-linear coefficient and the leakage current improve but the density decreases because of more porosity; the donor con- centration and density of interface states decrease, whereas the barrier height and width increase because of the acceptor effect of Y2O3 in varistor ceramics.展开更多
In this work,as-cast Mg-Ni-Y alloys were proposed to develop a feasible material for fracturing balls,and their mechanical performance and corrosion behavior were systematically investigated.Long period stacking order...In this work,as-cast Mg-Ni-Y alloys were proposed to develop a feasible material for fracturing balls,and their mechanical performance and corrosion behavior were systematically investigated.Long period stacking order(LPSO)phase was firstly introduced to improve both the mechanical properties and degradation rate of magnesium alloys.With the increase of LPSO phase,the compressive strength was improved significantly,while the elongation of the alloys decreased owing to the relatively brittle nature of LPSO phase.Due to the higher corrosion potential of LPSO phase,the LPSO phase can accelerate the corrosion process by providing more micro-couples.However,the LPSO phase would serve as the corrosion barrier between the corrosion medium and the matrix when the contents of LPSO phase are too high in Mg92.5Ni3Y4.5 and Mg87.5Ni5Y7.5 alloys.As-cast Mg97.5Ni1Y1.5 alloy with satisfactory mechanical properties and rapid degradation rate was successfully developed,exhibiting a high degradation rate of 6675 mm/a(93℃)in 3 wt.%KCl solution and a favorable ultimate compressive strength of 410 MPa.The degradation rate of Mg97.5Ni1Y1.5 alloy is 2-5 times of the current commercial magnesium alloy fracturing materials.展开更多
The influence of high energy ball milling on Al 30Si powder and ceramic particulate SiC was studied by means of SEM, XRD and DSC. The results show that Al 30Si powder and their microstructure are obviously refined aft...The influence of high energy ball milling on Al 30Si powder and ceramic particulate SiC was studied by means of SEM, XRD and DSC. The results show that Al 30Si powder and their microstructure are obviously refined after high energy ball milling process. The alloy powder and SiC p stick closely to each other without interfacial reaction. DSC results detect no reaction but relaxation of the samples. So high energy ball milling can be used as an effective method for ceramic particulate pre treatment in the fabrication of MMC.展开更多
Fe3O4 nanoparticles with sizes ranging from 30 to 80 nm were synthesized by wet milling iron powders in a planetary ball mill. The phase composition and the morphologies of the as-synthesized products were measured by...Fe3O4 nanoparticles with sizes ranging from 30 to 80 nm were synthesized by wet milling iron powders in a planetary ball mill. The phase composition and the morphologies of the as-synthesized products were measured by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Nanosized Fe3O4 particles were prepared by wet milling metallic iron powder (-200 mesh, 99%) in a planetary ball mill equipped with stainless steel vials using iron balls under distilled water with a ball-to-powder mass ratio of 50:1 and at a rotation speed of 300 rpm. The use of the iron balls in this method played a key role in Fe3O4 formation. The present technique is simple and the process is easy to carry out.展开更多
Rice false smut disease is an increasing concern for research and production, not only because of the increasing epidemic occurrence in rice production, but also the intriguing specific pathogenesis of the disease to ...Rice false smut disease is an increasing concern for research and production, not only because of the increasing epidemic occurrence in rice production, but also the intriguing specific pathogenesis of the disease to be a unique pathological system to enrich the molecular mechanism of plant-microbe interaction. Progresses have been achieved in the pathogen phylogenetic placement, the alternative hosts, the pathogen morphology and diversity, the toxins generated by false smut balls, the artificial inoculation method, and the pathogen transformation as well as rice resistance to the disease. However, it is still controversy on the infection process. It is not clear how the life cycle of this pathogen is coupled with the disease cycle. This review summarized our current understanding on the pathogen, the pathogenesis, and the rice resistance to the disease. Future work should pay attention to developing a more rapid and effective system to evaluate rice resistance and susceptibility to the disease, screening of rice germplasm for disease-resistance breeding, studying the resistance inheritance, and investigating the molecular mechanism of rice-false smut fungus interaction.展开更多
Multiwalled carbon nanotubes (CNTs) were coated by a molybdenum layer using carbonyl thermal decomposition process with a precursor of molybdenum hexacarbonyl. The Mo-coated CNTs (Mo-CNTs) were added into copper p...Multiwalled carbon nanotubes (CNTs) were coated by a molybdenum layer using carbonyl thermal decomposition process with a precursor of molybdenum hexacarbonyl. The Mo-coated CNTs (Mo-CNTs) were added into copper powders to fabricate Mo-CNT/Cu composites by means of mechanical milling followed by spark plasma sintering. The Mo-CNTs were uniform dispersion in the Cu matrix when their contents were 2.5 vo1.%-7.5 vol.%, while some Mo-CNT clusters were clearly observed at additions of 10.0 vo1.%-15.0 vol.% Mo-CNTs in the mixture. The mechanical, electrical, and thermal properties of the Mo-CNT/Cu composites were characterized, and the results showed that the tensile strength and hardness were 2.0 and 2.2 times higher than those of CNT-free specimens, respectively. Moreover, the Mo-CNT/Cu composites exhibited an enhanced thermal conductivity but inferior electrical conductivity compared with sintered pure Cu. The uncoated CNT/Cu composites were fabricated by the similar processes, and the measured tensile strength, hardness, thermal conductivity, and electrical conductivity of the CNT/Cu composites were lower than those of the Mo-CNT/Cu composites.展开更多
The mechanochemical dechlorination of pentachlorophenol (PCP) was studied using CaO and SiO2 powder as additives. The effects of the milling time and additives on the dechlorination rate were investigated. The resul...The mechanochemical dechlorination of pentachlorophenol (PCP) was studied using CaO and SiO2 powder as additives. The effects of the milling time and additives on the dechlorination rate were investigated. The resulting product was characterized by X-ray diffraction (XRD), Fourier transform infrared spectra (FT-IR), thermogravimetric analysis (TG) and ion chromatography (IC). It is found that grinding operation could dechlorinate PCP, with the formation of inorganic chloride and amorphous carbon. The addition of quartz to the grinding mixture facilitated dechlorination. On the basis of the experimental results, the decomposition mechanism was proposed. Decomposition predominantly proceeds through rupture of C-Cl bond in PCP molecule, followed by the formation of inorganic chlorides.展开更多
To investigate the cage stability of high-speed oil-lubricated angular contact ball bearings, a dynamic model of cages is developed on the basis of Gupta’s and Meeks’ work. The model can simulate the cage motion und...To investigate the cage stability of high-speed oil-lubricated angular contact ball bearings, a dynamic model of cages is developed on the basis of Gupta’s and Meeks’ work. The model can simulate the cage motion under oil lubrication with all six degrees of freedom. Particularly, the model introduces oil-film damping and hysteresis damping, and deals with the collision contact as imperfect elastic contact. In addition, the effects of inner ring rotational speed, the ratio of pocket clearance to guiding clearance and applied load on the cage stability are investigated by simulating the cage motion with the model. The results can provide a theoretical basis for the design of ball bearing parameters.展开更多
基金supported by Overseas Returnee Foundation of Heilongjiang Province, China (lc01c13).
文摘Ball spinning is applied to manufacturing thin-walled tube with high precision and high mechanical properties. On the basis of plastic mechanics, by simplifying ball spinning of thin-walled tube as plane strain problem, slab method is used for the purpose of calculating the contact deformation pressure. The spinning force components, the torsional moment, the deformation power and the deformation work are calculated further as well. The influence of the two important process parameters such as the feed ratio and the ball diameter on the spinning force components is analyzed in order to further control the spinning force components by regulating the two process variables during the ball spinning process. The stress and strain state in deformable zone as well as mechanics boundary conditions in ball spinning are obtained. The effect of the three spinning force components on the formability of the spun part is analyzed and validated through the ball spinning experiments. The theoretical and experimental results show that the radial spinning component plays a significant role in ball spinning of thin-walled tube, and the mechanics situation in backward ball spinning contributes to enhancing the plasticity of the metal material, but that in forward ball spinning contributes to advancing the axial flow of the metal material.
基金National Natural Science Foundation of China (50575031, 50975033)National Key Technology Research and Development Program (JPPT-115-189)
文摘This paper develops a five degrees of freedom(5-DOF) model for aeroengine spindle dual-rotor system dynamic analysis.In this system,the dual rotors are supported on two angular contact ball bearings and two deep groove ball bearings,one of the latter-mentioned bearings works as the inter-shaft bearing.Driven by respective motors,the dual rotors have different co-rotating speeds.The proposed model mathematically formulates the nonlinear displacements,elastic deflections and contact forces of bearings with consideration of 5-DOF and coupling of dual rotors.The nonlinear equations of motions of dual rotors with 5-DOF are solved using Runge-Kutta-Fehlberg algorithm.In order to investigate the effect of the introduced 5-DOF and nonlinear dy-namic bearing model,we compare the proposed model with two models:the 3-DOF model of this system only considering three translational degrees of freedom(Gupta,1993,rotational freedom is neglected);the 5-DOF model where the deep groove ball bearings are simplified as linear elastic spring(Guskov,2007).The simulation results verify Gupta's prediction(1993) and show that the rotational freedom of rotors and nonlinear dynamic model of bearings have great effect on the system dynamic simula-tion.The quantitative results are given as well.
基金supported by National Natural Science Foundation of China (Grant No. 50935002, Grant No. 51105342)
文摘Ball bearings play an important role in various rotating machineries,but the complicated kinematic and tribological features of ball bearings make many aspects of their operating behaviors still inconclusive.Most theoretical analyses of ball bearings up to date are based on either the hypothesis of race control or other empirical models to determine the ball motion of ball bearings,but none of these strategies can reveal and consequently employ the intrinsic coupling mechanism between the spin and the tangential traction of contacting bodies rolling upon one another.To remedy the deficiency of current analytical models for ball bearing analysis,the rolling contact theory is employed to establish an explicit link between motions and interactions within ball bearings.A differential slip model is established to precisely define the slip component due to the significant curvature of the common contact patches between the ball and inner/outer raceways.The creepage and the spin ratio are formulated to accurately define the relative rigid motion between the ball and the inner/outer raceway.Then a quasi-static analytical model is established that can accurately determine the motions of the balls and races of the ball bearing.It can also give a vivid description of the slip and traction distributions within the contact area.The analytical model can be effectively used to analyze the operational conditions and tribological features of solid-lubricated ball bearings.It can also be used optimize the construction of ball bearings for specific applications.
文摘Some results on convergence of Newton's method in Banach spaces are established under the assumption that the derivative of the operators satisfies the radius or center Lipschitz condition with a weak L average.
文摘Y2O3-doped ZnO-based varistor ceramics were prepared using high-energy ball milling (HEBM) and low-temperature sin- tering technique, with voltage-gradient of 1934-2197 V/mm, non-linear coefficients of 20.8-21.8, leakage currents of 0.59-1.04 μA, and densities of 5.46-5.57 g/cm3. With increasing Y2O3 content, the voltage-gradient increases because of the decrease of ZnO grain size; the non-linear coefficient and the leakage current improve but the density decreases because of more porosity; the donor con- centration and density of interface states decrease, whereas the barrier height and width increase because of the acceptor effect of Y2O3 in varistor ceramics.
基金This work is financially supported by the National Key Research and Development Program of China(Grant No.2016YFB0301100)the Chongqing Foundation and Advanced Research Project(Grant No.cstc2019jcyj-zdxmX0010)+1 种基金the Natural Science Foundation Commission of China(Grant No.51571044 and 51874062)Fundamental Research Funds for the Central Universities(Grant No.2018CDGFCL0005 and 2019CDXYCL0031).
文摘In this work,as-cast Mg-Ni-Y alloys were proposed to develop a feasible material for fracturing balls,and their mechanical performance and corrosion behavior were systematically investigated.Long period stacking order(LPSO)phase was firstly introduced to improve both the mechanical properties and degradation rate of magnesium alloys.With the increase of LPSO phase,the compressive strength was improved significantly,while the elongation of the alloys decreased owing to the relatively brittle nature of LPSO phase.Due to the higher corrosion potential of LPSO phase,the LPSO phase can accelerate the corrosion process by providing more micro-couples.However,the LPSO phase would serve as the corrosion barrier between the corrosion medium and the matrix when the contents of LPSO phase are too high in Mg92.5Ni3Y4.5 and Mg87.5Ni5Y7.5 alloys.As-cast Mg97.5Ni1Y1.5 alloy with satisfactory mechanical properties and rapid degradation rate was successfully developed,exhibiting a high degradation rate of 6675 mm/a(93℃)in 3 wt.%KCl solution and a favorable ultimate compressive strength of 410 MPa.The degradation rate of Mg97.5Ni1Y1.5 alloy is 2-5 times of the current commercial magnesium alloy fracturing materials.
文摘The influence of high energy ball milling on Al 30Si powder and ceramic particulate SiC was studied by means of SEM, XRD and DSC. The results show that Al 30Si powder and their microstructure are obviously refined after high energy ball milling process. The alloy powder and SiC p stick closely to each other without interfacial reaction. DSC results detect no reaction but relaxation of the samples. So high energy ball milling can be used as an effective method for ceramic particulate pre treatment in the fabrication of MMC.
文摘Fe3O4 nanoparticles with sizes ranging from 30 to 80 nm were synthesized by wet milling iron powders in a planetary ball mill. The phase composition and the morphologies of the as-synthesized products were measured by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Nanosized Fe3O4 particles were prepared by wet milling metallic iron powder (-200 mesh, 99%) in a planetary ball mill equipped with stainless steel vials using iron balls under distilled water with a ball-to-powder mass ratio of 50:1 and at a rotation speed of 300 rpm. The use of the iron balls in this method played a key role in Fe3O4 formation. The present technique is simple and the process is easy to carry out.
文摘Rice false smut disease is an increasing concern for research and production, not only because of the increasing epidemic occurrence in rice production, but also the intriguing specific pathogenesis of the disease to be a unique pathological system to enrich the molecular mechanism of plant-microbe interaction. Progresses have been achieved in the pathogen phylogenetic placement, the alternative hosts, the pathogen morphology and diversity, the toxins generated by false smut balls, the artificial inoculation method, and the pathogen transformation as well as rice resistance to the disease. However, it is still controversy on the infection process. It is not clear how the life cycle of this pathogen is coupled with the disease cycle. This review summarized our current understanding on the pathogen, the pathogenesis, and the rice resistance to the disease. Future work should pay attention to developing a more rapid and effective system to evaluate rice resistance and susceptibility to the disease, screening of rice germplasm for disease-resistance breeding, studying the resistance inheritance, and investigating the molecular mechanism of rice-false smut fungus interaction.
基金supported by the National Natural Science Foundation of China (No.50971020)the National High-Tech Research and Development Program of China (No.2009AA03Z116)
文摘Multiwalled carbon nanotubes (CNTs) were coated by a molybdenum layer using carbonyl thermal decomposition process with a precursor of molybdenum hexacarbonyl. The Mo-coated CNTs (Mo-CNTs) were added into copper powders to fabricate Mo-CNT/Cu composites by means of mechanical milling followed by spark plasma sintering. The Mo-CNTs were uniform dispersion in the Cu matrix when their contents were 2.5 vo1.%-7.5 vol.%, while some Mo-CNT clusters were clearly observed at additions of 10.0 vo1.%-15.0 vol.% Mo-CNTs in the mixture. The mechanical, electrical, and thermal properties of the Mo-CNT/Cu composites were characterized, and the results showed that the tensile strength and hardness were 2.0 and 2.2 times higher than those of CNT-free specimens, respectively. Moreover, the Mo-CNT/Cu composites exhibited an enhanced thermal conductivity but inferior electrical conductivity compared with sintered pure Cu. The uncoated CNT/Cu composites were fabricated by the similar processes, and the measured tensile strength, hardness, thermal conductivity, and electrical conductivity of the CNT/Cu composites were lower than those of the Mo-CNT/Cu composites.
基金supported by the National Natural Science Foundation of China (No. 50776081)the Doctoral Program of Higher Education (No. 20060335129)the Project on Science and Technology of Zhejiang Province of China (No. 2008C23090)
文摘The mechanochemical dechlorination of pentachlorophenol (PCP) was studied using CaO and SiO2 powder as additives. The effects of the milling time and additives on the dechlorination rate were investigated. The resulting product was characterized by X-ray diffraction (XRD), Fourier transform infrared spectra (FT-IR), thermogravimetric analysis (TG) and ion chromatography (IC). It is found that grinding operation could dechlorinate PCP, with the formation of inorganic chloride and amorphous carbon. The addition of quartz to the grinding mixture facilitated dechlorination. On the basis of the experimental results, the decomposition mechanism was proposed. Decomposition predominantly proceeds through rupture of C-Cl bond in PCP molecule, followed by the formation of inorganic chlorides.
基金Supported by National Key Technology Research and Development Program of China during the 11th Five-Year Plan Period (No. JPPT-115-189)National Natural Science Foundation of China (No. 50975033)
文摘To investigate the cage stability of high-speed oil-lubricated angular contact ball bearings, a dynamic model of cages is developed on the basis of Gupta’s and Meeks’ work. The model can simulate the cage motion under oil lubrication with all six degrees of freedom. Particularly, the model introduces oil-film damping and hysteresis damping, and deals with the collision contact as imperfect elastic contact. In addition, the effects of inner ring rotational speed, the ratio of pocket clearance to guiding clearance and applied load on the cage stability are investigated by simulating the cage motion with the model. The results can provide a theoretical basis for the design of ball bearing parameters.