Rockburst prediction is of vital significance to the design and construction of underground hard rock mines.A rockburst database consisting of 102 case histories,i.e.,1998−2011 period data from 14 hard rock mines was ...Rockburst prediction is of vital significance to the design and construction of underground hard rock mines.A rockburst database consisting of 102 case histories,i.e.,1998−2011 period data from 14 hard rock mines was examined for rockburst prediction in burst-prone mines by three tree-based ensemble methods.The dataset was examined with six widely accepted indices which are:the maximum tangential stress around the excavation boundary(MTS),uniaxial compressive strength(UCS)and uniaxial tensile strength(UTS)of the intact rock,stress concentration factor(SCF),rock brittleness index(BI),and strain energy storage index(EEI).Two boosting(AdaBoost.M1,SAMME)and bagging algorithms with classification trees as baseline classifier on ability to learn rockburst were evaluated.The available dataset was randomly divided into training set(2/3 of whole datasets)and testing set(the remaining datasets).Repeated 10-fold cross validation(CV)was applied as the validation method for tuning the hyper-parameters.The margin analysis and the variable relative importance were employed to analyze some characteristics of the ensembles.According to 10-fold CV,the accuracy analysis of rockburst dataset demonstrated that the best prediction method for the potential of rockburst is bagging when compared to AdaBoost.M1,SAMME algorithms and empirical criteria methods.展开更多
提出一种新颖的基于boosting RBF神经网络的入侵检测方法。将模糊聚类和神经网络技术相结合,提出基于改进的FCM算法和OLS算法相结合的FORBF算法,为了提高RBF神经网络的泛化能力,采用Boosting方法,进行网络集成。以"KDD Cup 1999 Da...提出一种新颖的基于boosting RBF神经网络的入侵检测方法。将模糊聚类和神经网络技术相结合,提出基于改进的FCM算法和OLS算法相结合的FORBF算法,为了提高RBF神经网络的泛化能力,采用Boosting方法,进行网络集成。以"KDD Cup 1999 Data"网络连接数据集训练神经网络并仿真实验,得到了较高的检测率和较低的误警率。展开更多
基金Projects(41807259,51604109)supported by the National Natural Science Foundation of ChinaProject(2020CX040)supported by the Innovation-Driven Project of Central South University,ChinaProject(2018JJ3693)supported by the Natural Science Foundation of Hunan Province,China。
文摘Rockburst prediction is of vital significance to the design and construction of underground hard rock mines.A rockburst database consisting of 102 case histories,i.e.,1998−2011 period data from 14 hard rock mines was examined for rockburst prediction in burst-prone mines by three tree-based ensemble methods.The dataset was examined with six widely accepted indices which are:the maximum tangential stress around the excavation boundary(MTS),uniaxial compressive strength(UCS)and uniaxial tensile strength(UTS)of the intact rock,stress concentration factor(SCF),rock brittleness index(BI),and strain energy storage index(EEI).Two boosting(AdaBoost.M1,SAMME)and bagging algorithms with classification trees as baseline classifier on ability to learn rockburst were evaluated.The available dataset was randomly divided into training set(2/3 of whole datasets)and testing set(the remaining datasets).Repeated 10-fold cross validation(CV)was applied as the validation method for tuning the hyper-parameters.The margin analysis and the variable relative importance were employed to analyze some characteristics of the ensembles.According to 10-fold CV,the accuracy analysis of rockburst dataset demonstrated that the best prediction method for the potential of rockburst is bagging when compared to AdaBoost.M1,SAMME algorithms and empirical criteria methods.
基金河北省自然科学基金(the Natural Science Foundation of Hebei Province of China under Grant No.F2007000682)
文摘提出一种新颖的基于boosting RBF神经网络的入侵检测方法。将模糊聚类和神经网络技术相结合,提出基于改进的FCM算法和OLS算法相结合的FORBF算法,为了提高RBF神经网络的泛化能力,采用Boosting方法,进行网络集成。以"KDD Cup 1999 Data"网络连接数据集训练神经网络并仿真实验,得到了较高的检测率和较低的误警率。
文摘提出了一种新颖的基于boosting BP神经网络的入侵检测方法。为了提高BP神经网络的泛化能力,采用改进的Boosting方法,进行网络集成。Boosting方法采用更有效的参数求解方法,即弱分类器的加权参数不但与错误率有关,还与其对正样本的识别能力有关。对"KDD Cup 1999 Data"网络连接数据集进行特征选择和归一化处理之后用于训练神经网络并仿真实验,得到了较高的检测率和较低的误报率,仿真结果表明,提出的入侵检测方法是有效的。