A new strategy to induce vesicle fusion has been developed by employing pillar[5]arene derivatives that were channel-like and were prepared by appending side chains onto pillar[5]arenes backbones.The channels feature ...A new strategy to induce vesicle fusion has been developed by employing pillar[5]arene derivatives that were channel-like and were prepared by appending side chains onto pillar[5]arenes backbones.The channels feature with hydrophilic negatively and positively charged groups at both ends and hydrophobic Trp residues at the outer surface,which endows the channels with amphiphilicity.The zwitterionic amphiphilic channels could spontaneously incorporate into the bilayer membranes of lipid vesicles to induce vesicle fusion driven by the electrostatic interactions between negatively charged and positively charged groups.展开更多
A clear microscopic understanding of exchange bias is crucial for its application in magnetic recording, and further progress in this area is desired. Based on the results of our first-principles calculations and Mont...A clear microscopic understanding of exchange bias is crucial for its application in magnetic recording, and further progress in this area is desired. Based on the results of our first-principles calculations and Monte Carlo simulations,we present a theoretical proposal for a stacking-dependent exchange bias in two-dimensional compensated van der Waals ferromagnetic/antiferromagnetic bilayer heterostructures. The exchange bias effect emerges in stacking registries that accommodate inhomogeneous interlayer magnetic interactions between the ferromagnetic layer and different spin sublattices of the antiferromagnetic layer. Moreover, the on/off switching and polarity reversal of the exchange bias can be achieved by interlayer sliding, and the strength can be modulated using an external electric field. Our findings push the limits of exchange bias systems to extreme bilayer thickness in two-dimensional van der Waals heterostructures, potentially stimulating new experimental investigations and applications.展开更多
The structure dependence of exchange bias in ferromagnetic/antiferromagnetic (FM/AF) bilayers has been investigated in detail by extending Slonczewski's 'proximity magnetism' idea. Here three important parameters...The structure dependence of exchange bias in ferromagnetic/antiferromagnetic (FM/AF) bilayers has been investigated in detail by extending Slonczewski's 'proximity magnetism' idea. Here three important parameters are discussed for FM/AF bilayers, i.e. interracial bilinear exchange coupling J1, interracial biquadratic (spin-flop) exchange coupling J2 and antiferromagnetic layer thickness tAF. The results show that both the occurrence and the variety of the exchange bias strongly depend on the above parameters. More importantly, the small spin-flop exchange coupling may result in an exchange bias without the interracial bilinear exchange coupling. However, in general, the spin-flop exchange coupling cannot result in the exchange bias. The corresponding critical parameters in which the exchange bias will occur or approach saturation are also presented.展开更多
Electron transport layer(ETL)is pivotal to charge carrier transport for PSCs to reach the Shockley-Queisser limit.This study provides a fundamental understanding of heterojunction electron transport layers(ETLs)at the...Electron transport layer(ETL)is pivotal to charge carrier transport for PSCs to reach the Shockley-Queisser limit.This study provides a fundamental understanding of heterojunction electron transport layers(ETLs)at the atomic level for stable and efficient perovskite solar cells(PSCs).The bilayer structure of an ETL composed of SnO_(2) on TiO_(2) was examined,revealing a critical factor limiting its potential to obtain efficient performance.Alteration of oxygen vacancies in the TiO_(2) underlayer via an annealing process is found to induce manipulated band offsets at the interface between the TiO_(2) and SnO_(2) layers.In-depth electronic investigations of the bilayer structure elucidate the importance of the electronic properties at the interface between the TiO_(2) and SnO_(2) layers.The apparent correlation in hysteresis phenomena,including current density-voltage(J-V)curves,appears as a function of the type of band alignment.Density functional theory calculations reveal the intimate relationship between oxygen vacancies,deep trap states,and charge transport efficiency at the interface between the TiO_(2) and SnO_(2) layers.The formation of cascade band alignment via control over the TiO_(2) underlayer enhances device performance and suppresses hysteresis.Optimal performance exhibits a power conversion efficiency(PCE)of 23.45%with an open-circuit voltage(V_(oc))of 1.184 V,showing better device stability under maximum power point tracking compared with a staggered bilayer under one-sun continuous illumination.展开更多
Lipid bilayers are some of the most fascinating self-assembled structure in living nature. Not only do they serve as the protective boundary of cells and their internal organelles, they also organize and host major pa...Lipid bilayers are some of the most fascinating self-assembled structure in living nature. Not only do they serve as the protective boundary of cells and their internal organelles, they also organize and host major parts of the biochemical machinery for cellular communication and transmembrane transport. To study aspects of cellular membranes in a controlled manner, solid supported planar bilayers have served as reliable tools for many decades. They have been used in a large variety of studies ranging from fundamental investigations of membranes and their constituents to the dissection of cellular signaling mechanisms. However, there are limitations to these systems and recently a class of new systems in which the lipid bilayer is supported on a soft, polymer cushion has emerged. Here, we review the different polymer cushioned bilayer systems and discuss their manufacture and advantages.展开更多
Phospholipids (PLs) in the form of nanostructures are widely employed as a lubricant and antimicrobial agent. The cartilage (AC) surface was characterized using wettability test fresh and depleted AC samples. Cartilag...Phospholipids (PLs) in the form of nanostructures are widely employed as a lubricant and antimicrobial agent. The cartilage (AC) surface was characterized using wettability test fresh and depleted AC samples. Cartilage wet surface exposure to air causes increase </span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">in </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">surface wettability from 0 to 104 degrees. Effect is explained by flip-flop of the PLs molecules in membrane. The hydrophilic and hydrophobic character of cartilage was determined. Microscopic image of PLs bilayers adsorbed on the surface of pleural tissues and human stomach will be compared with cartilage tissue.展开更多
The hysteresis loops as well as the spin distributions of Sm-Co/a-Fe bilayers have been investigated by both three- dimensional (3D) and one-dimensional (1D) micromagnetic calculations, focusing on the effect of t...The hysteresis loops as well as the spin distributions of Sm-Co/a-Fe bilayers have been investigated by both three- dimensional (3D) and one-dimensional (1D) micromagnetic calculations, focusing on the effect of the interface exchange coupling under various soft layer thicknesses ts. The exchange coupling coefficient Alas between the hard and soft ,layers varies from 1.8 x10-6 erg/cm to 0.45 x 10-6 erg/cm, while the soft layer thickness increases from 2 nm to 10 nm. As the exchange coupling decreases, the squareness of the loop gradually deteriorates, both pinning and coercive fields rise up monotonically, and the nucleation field goes down. On the other hand, an increment of the soft layer thickness leads to a significant drop of the nucleation field, the deterioration of the hysteresis loop squareness, and an increase of the remanence. The simulated loops based on the 3D and 1D methods are consistent with each other and in good agreement with the measured loops for Sm-Co/a-Fe multilayers.展开更多
A general method was developed for promoting peptide assembly and protein polymerization to form nanoscale patterns on various surfaces with an atomic force microscope(AFM) operated in a liquid. By scanning solid surf...A general method was developed for promoting peptide assembly and protein polymerization to form nanoscale patterns on various surfaces with an atomic force microscope(AFM) operated in a liquid. By scanning solid surfaces with an AFM tip, we showed that peptide monomers assemble at a higher rate in the tip-scanned area compared to other regions. The promotion is attributed to the mechanical force applied by the scanning tip. This kind of mechanical-force-promoted assembly was also observed with different peptides on various substrates. The force promoting peptide assembly provides a simple and practical solution for preparing and building peptide and protein architectures for future nanodevices.展开更多
Superparamagnetic carbon-coated Fe3O4 nanoparticles with high magnetization(85 emu·g-(-1)) and high crystallinity were synthesized using polyethylene glycol-4000(PEG(4000)) as a carbon source.Fe3O4 water-...Superparamagnetic carbon-coated Fe3O4 nanoparticles with high magnetization(85 emu·g-(-1)) and high crystallinity were synthesized using polyethylene glycol-4000(PEG(4000)) as a carbon source.Fe3O4 water-based bilayer-surfactant-enveloped ferrofluids were subsequently prepared using sodium oleate and PEG(4000) as dispersants.Analyses using X-ray photoelectron spectroscopy,X-ray diffraction,and Fourier-transform infrared spectroscopy indicate that the Fe3O4 nanoparticles with a bilayer surfactant coating retain the inverse spinel-type structure and are successfully coated with sodium oleate and PEG(4000).Transmission electron microscopy,vibrating sample magnetometry,and particle-size analysis results indicate that the coated Fe3O4 nanoparticles also retain the good saturation magnetization of Fe3O4(79.6 emu·g^-1) and that the particle size of the bilayer-surfactant-enveloped Fe3O4 nanoparticles is 42.97 nm,which is substantially smaller than that of the unmodified Fe3O4 nanoparticles(486.2 nm).UV-vis and zeta-potential analyses reveal that the ferrofluids does not agglomerate for 120 h at a concentration of 4 g·L^-1,which indicates that the ferrofluids are highly stable.展开更多
Ionophore can prominently improve the ion permeability of cell membrane and disrupt cellular ion homeostasis.Most studies regarding ionophore facilitating ion transmembrane transport focus on artificial liquid-liquid ...Ionophore can prominently improve the ion permeability of cell membrane and disrupt cellular ion homeostasis.Most studies regarding ionophore facilitating ion transmembrane transport focus on artificial liquid-liquid interfaces,which have large difference from the actual environment of cell membrane.Here,we construct a supported lipid bilayeron a gold nanoparticles film modified ZnSe prism as an appropriate model of cell membrane to investigate the dynamic of the ion transport facilitated by ionophore using surface enhanced infrared absorption spectroscopy(SEIRAS).We find that the ion transmembrane transport consists of two steps:The ion transmembrane transport starts with the association/disassociation between ion and ionophore at the edge of lipid bilayer;The second step is the transfer of ion-ionophore complex across lipid bilayer.Our results show that the complex transfer across the lipid bilayer is the rate determining step.展开更多
We present first results from a hybrid coplanar waveguide microfluidic tank circuit for monitoring lipid bilayer formation and fluctuations of integrated proteins. The coplanar waveguide is a radio frequency resonator...We present first results from a hybrid coplanar waveguide microfluidic tank circuit for monitoring lipid bilayer formation and fluctuations of integrated proteins. The coplanar waveguide is a radio frequency resonator operating at ~250 MHz. Changes within the integrated microfluidic chamber, such as vesicle bursting and subsequent nanopore formation alter the reflected signal, and can be detected with nanosecond resolution. We show experimental evidence of such alterations when the microfluidic channel is filled with giant unilamellar vesicles (GUVs). Subsequent settling and bursting of the GUVs form planar lipid bilayers, yielding a detectable change in the resonant frequency of the device. Results from finite element simulations of our device correlate well with our experimental evidence. These simulations also indicate that nanopore formation within the bilayer is easily detectable. The simulated structure allows for incorporation of microfluidics as well as simultaneous RF and DC recordings. The technique holds promise for high throughput drug screening applications and could also be used as an in-plane probe for various other applications. It opens up possibilities of exploring ion channels and other nano scale pores in a whole new frequency band allowing for operating at bandwidths well above the traditional DC methods.展开更多
One of the detrimental effects of high salmity on plant cells is considered to be the result of an ion imbalance, particularly a high ratio of Na^+ to K^+ ions, in the cytoplasm. Such an imbalance is probably due to a...One of the detrimental effects of high salmity on plant cells is considered to be the result of an ion imbalance, particularly a high ratio of Na^+ to K^+ ions, in the cytoplasm. Such an imbalance is probably due to a great increase of entry of Na^+ ions into cells and a decline in absorption of K^+ ions under high-salinity conditions. Thus, plant cells展开更多
Since the exchange bias (EB) effect was discovered in the Co/CoO core-shell nanoparticles, it has been extensively studied in various ferromagnet (FM)/antiferromagnet (AFM) bilayers due to its crucial role in sp...Since the exchange bias (EB) effect was discovered in the Co/CoO core-shell nanoparticles, it has been extensively studied in various ferromagnet (FM)/antiferromagnet (AFM) bilayers due to its crucial role in spintronics devices. In this article, we review the investigation of the EB in our research group. First, we outline basic features of the EB, including the effects of the constituent layer thickness, the microstructure and magnetization of the FM layers, and we also discuss asymmetric magnetization reversal process in wedged-FM/AFM bilayers. Secondly, we discuss the mechanisms of the positive EB and the perpendicular EB. Thirdly, we demonstrate the hysteretic behavior of the angular dependence of the EB and analyze the EB training effect. Finally, we discuss the roles of the rotatable anisotropy in the two phenomena.展开更多
We have investigated the exchange bias and training effect in the ferromagnetic/antiferromagnetic (FM/AF) heterostructures using a unified Monte Carlo dynamical approach. The magnetization of the uncompensated AF la...We have investigated the exchange bias and training effect in the ferromagnetic/antiferromagnetic (FM/AF) heterostructures using a unified Monte Carlo dynamical approach. The magnetization of the uncompensated AF layer is still open after the first field cycling is finished. Our simulated results show obvious shift of hysteresis loops (exchange bias) and cycling dependence of exchange bias (training effect) when the temperature is below 45 K. The exchange bias field decreases with decreasing cooling rate or increasing temperature and the number of the field cycling. Essentially, these two effects can be explained on the basis of the microscopical coexistence of both reversible and irreversible moment reversals of the AF domains. Our simulations are useful to understand the real magnetization dynamics of such magnetic heterostructures.展开更多
The current Chemistry at Harvard Molecular Mechanics (CHARMM) force field cannot accurately describe the properties of unsaturated phospholipid membranes. In this paper, a series of simulations was performed in which ...The current Chemistry at Harvard Molecular Mechanics (CHARMM) force field cannot accurately describe the properties of unsaturated phospholipid membranes. In this paper, a series of simulations was performed in which the Lennard- Jones (L-J) parameters of lipid acyl chains of dioleoylphosphatidylcholine (DOPC) were systematically adjusted. The results showed that adjustment of the L-J parameters in lipid acyl chains can significantly improve the current CHARMM force field. It was found that the L-J parameters have different influences on the order parameters of the top half and bottom half of the chain, separated by the cis double bond. The order parameters of the top half and the bottom half of the chain are related to the area/lipid and the length of the chain, respectively.展开更多
Skyrmion, as a quasi-particle structure, has attracted much attention due to its potential applications in future spintronic devices. Artificial skyrmion structure has aroused great interest as it can be stabilized at...Skyrmion, as a quasi-particle structure, has attracted much attention due to its potential applications in future spintronic devices. Artificial skyrmion structure has aroused great interest as it can be stabilized at room temperature, without needing to incorporate materials with Dzyaloshinskii–Moriya interaction(DMI) into it. In this paper, it is found that the artificial skyrmion structure can be realized in CoCrPt/NiFe bilayers by micromagnetic simulations. The critical magnetic field of the core decreases as the diameter of the NiFe soft magnetic layer increases. The artificial skyrmion has excellent topological protection, and the critical magnetic field of plane is about 76 mT(760 Oe, 1 Oe = 79.5775 A·m-1). The external magnetic field plays a key role in determining the core diameter of the skyrmion, and the artificial skyrmion can be realized in CoCrPt/Cu/CoCrPt/NiFe four-layer with a diameter of 13 nm.展开更多
Superconductivity (SC) is one of the most intriguing physical phenomena in nature. Nucleation of SC has long been considered highly unfavorable if not impossible near ferromagnetism, in low dimensionality and, above...Superconductivity (SC) is one of the most intriguing physical phenomena in nature. Nucleation of SC has long been considered highly unfavorable if not impossible near ferromagnetism, in low dimensionality and, above all, out of non-superconductor. Here we report observation of SC with TC near 4K in Ni/Bi bilayers that defies all known paradigms of superconductivity, where neither ferromagnetic Ni film nor rhombohedra Bi film is superconducting in isolation. This highly unusual SC is independent of the growth order (Ni/Bi or Bi/Ni), but highly sensitive to the constituent layer thicknesses. Most importantly, the SC, distinctively non-s pairing, is triggered from, but does not occur at, the Bi/Ni interface. Using point contact Andreev reflection, we show evidences that the unique SC, naturally compatible with magnetism, is triplet p-wave pairing.展开更多
Flexible electronic devices are often subjected to large and repeated deformation,so that their functional components such as metal interconnects need to sustain strains up to tens of percent,which is far beyond the i...Flexible electronic devices are often subjected to large and repeated deformation,so that their functional components such as metal interconnects need to sustain strains up to tens of percent,which is far beyond the intrinsic deformability of metal materials(~1%).To meet the stringent requirements of flexible electronics,metal/elastomer bilayers,a stretchable structure that consists of a metal film adhered to a stretchable elastomer substrate,have been developed to improve the stretch capability of metal interconnects.Previous studies have predicted that the metal/elastomer bilayers are much more stretchable than freestanding metal films.However,these investigations usually assume perfect bonding between the metal and elastomer layers.In this work,the effect of the metal/elastomer interface with a finite interfacial stiffness on the stretchability of bilayer structures is analyzed.The results show that the assumption of perfect interface(with infinite interfacial stiffness)may lead to an overestimation of the stretchability of bilayer structures.It is also demonstrated that increased adhesion between the metal and elastomer layers can enhance the stretchability of the metal layer.展开更多
基金the National Natural Science Foundation of China(NSFC,Nos.21921003 and 21971046)the Science and Technology Commission of Shanghai Municipality(STCSM,No.22JC1403700).
文摘A new strategy to induce vesicle fusion has been developed by employing pillar[5]arene derivatives that were channel-like and were prepared by appending side chains onto pillar[5]arenes backbones.The channels feature with hydrophilic negatively and positively charged groups at both ends and hydrophobic Trp residues at the outer surface,which endows the channels with amphiphilicity.The zwitterionic amphiphilic channels could spontaneously incorporate into the bilayer membranes of lipid vesicles to induce vesicle fusion driven by the electrostatic interactions between negatively charged and positively charged groups.
基金Project supported by the National Key Research and Development Program of China (Grant No.2019YFA0210004)the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No.XDB30000000)+1 种基金the Fundamental Research Funds for the Central Universities (Grant No.WK3510000013)the National Supercomputing Center in Tianjin。
文摘A clear microscopic understanding of exchange bias is crucial for its application in magnetic recording, and further progress in this area is desired. Based on the results of our first-principles calculations and Monte Carlo simulations,we present a theoretical proposal for a stacking-dependent exchange bias in two-dimensional compensated van der Waals ferromagnetic/antiferromagnetic bilayer heterostructures. The exchange bias effect emerges in stacking registries that accommodate inhomogeneous interlayer magnetic interactions between the ferromagnetic layer and different spin sublattices of the antiferromagnetic layer. Moreover, the on/off switching and polarity reversal of the exchange bias can be achieved by interlayer sliding, and the strength can be modulated using an external electric field. Our findings push the limits of exchange bias systems to extreme bilayer thickness in two-dimensional van der Waals heterostructures, potentially stimulating new experimental investigations and applications.
基金Project supported by the National Natural Sciences Foundation of China (Grant No 10347118)the Natural Science Foundation of Education Commission of Jiangsu Province,China (Grant No 2006KJB140133)
文摘The structure dependence of exchange bias in ferromagnetic/antiferromagnetic (FM/AF) bilayers has been investigated in detail by extending Slonczewski's 'proximity magnetism' idea. Here three important parameters are discussed for FM/AF bilayers, i.e. interracial bilinear exchange coupling J1, interracial biquadratic (spin-flop) exchange coupling J2 and antiferromagnetic layer thickness tAF. The results show that both the occurrence and the variety of the exchange bias strongly depend on the above parameters. More importantly, the small spin-flop exchange coupling may result in an exchange bias without the interracial bilinear exchange coupling. However, in general, the spin-flop exchange coupling cannot result in the exchange bias. The corresponding critical parameters in which the exchange bias will occur or approach saturation are also presented.
基金supported by the New&Renewable Energy Core Technology Program of the Korea Institute of Energy Technology Evaluation and Planning(KETEP)granted financial resource from the Ministry of Trade,Industry&Energy(MOTIE),Republic of Korea(No.20213091010020)National Research Foundation of Korea(NRF)grant funded by the Korea Government(MSIT)(2020R1A2C1101085)+2 种基金the Korea Institute of Planning and Evaluation for Technology in Food,Agriculture and Forestry(IPET)and Korea Smart Farm R&D Foundation(KosFarm)through Smart Farm Innovation Technology Development Programfunded by the Ministry of Agriculture,Food and Rural Affairs(MAFRA)the Ministry of Science and ICT(MSIT),Rural Development Administration(RDA)(421036-03).
文摘Electron transport layer(ETL)is pivotal to charge carrier transport for PSCs to reach the Shockley-Queisser limit.This study provides a fundamental understanding of heterojunction electron transport layers(ETLs)at the atomic level for stable and efficient perovskite solar cells(PSCs).The bilayer structure of an ETL composed of SnO_(2) on TiO_(2) was examined,revealing a critical factor limiting its potential to obtain efficient performance.Alteration of oxygen vacancies in the TiO_(2) underlayer via an annealing process is found to induce manipulated band offsets at the interface between the TiO_(2) and SnO_(2) layers.In-depth electronic investigations of the bilayer structure elucidate the importance of the electronic properties at the interface between the TiO_(2) and SnO_(2) layers.The apparent correlation in hysteresis phenomena,including current density-voltage(J-V)curves,appears as a function of the type of band alignment.Density functional theory calculations reveal the intimate relationship between oxygen vacancies,deep trap states,and charge transport efficiency at the interface between the TiO_(2) and SnO_(2) layers.The formation of cascade band alignment via control over the TiO_(2) underlayer enhances device performance and suppresses hysteresis.Optimal performance exhibits a power conversion efficiency(PCE)of 23.45%with an open-circuit voltage(V_(oc))of 1.184 V,showing better device stability under maximum power point tracking compared with a staggered bilayer under one-sun continuous illumination.
文摘Lipid bilayers are some of the most fascinating self-assembled structure in living nature. Not only do they serve as the protective boundary of cells and their internal organelles, they also organize and host major parts of the biochemical machinery for cellular communication and transmembrane transport. To study aspects of cellular membranes in a controlled manner, solid supported planar bilayers have served as reliable tools for many decades. They have been used in a large variety of studies ranging from fundamental investigations of membranes and their constituents to the dissection of cellular signaling mechanisms. However, there are limitations to these systems and recently a class of new systems in which the lipid bilayer is supported on a soft, polymer cushion has emerged. Here, we review the different polymer cushioned bilayer systems and discuss their manufacture and advantages.
文摘Phospholipids (PLs) in the form of nanostructures are widely employed as a lubricant and antimicrobial agent. The cartilage (AC) surface was characterized using wettability test fresh and depleted AC samples. Cartilage wet surface exposure to air causes increase </span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">in </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">surface wettability from 0 to 104 degrees. Effect is explained by flip-flop of the PLs molecules in membrane. The hydrophilic and hydrophobic character of cartilage was determined. Microscopic image of PLs bilayers adsorbed on the surface of pleural tissues and human stomach will be compared with cartilage tissue.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11074179 and 10747007)the National Basic Research Program of Chi(Grant No.2014CB643702)+3 种基金the Zhejiang Provincial Natural Science Foundation of China(Grant No.LY14E010006)the Construction Plan for Scientif Research Innovation Teams of Universities in Sichuan Province,China(Grant No.12TD008)the Scientific Research Foundation for the Returned Overse Chinese Scholars of the Education Ministry,Chinathe Program for Key Science and Technology Innovation Team of Zhejiang Province,China(Gra No.2013TD08)
文摘The hysteresis loops as well as the spin distributions of Sm-Co/a-Fe bilayers have been investigated by both three- dimensional (3D) and one-dimensional (1D) micromagnetic calculations, focusing on the effect of the interface exchange coupling under various soft layer thicknesses ts. The exchange coupling coefficient Alas between the hard and soft ,layers varies from 1.8 x10-6 erg/cm to 0.45 x 10-6 erg/cm, while the soft layer thickness increases from 2 nm to 10 nm. As the exchange coupling decreases, the squareness of the loop gradually deteriorates, both pinning and coercive fields rise up monotonically, and the nucleation field goes down. On the other hand, an increment of the soft layer thickness leads to a significant drop of the nucleation field, the deterioration of the hysteresis loop squareness, and an increase of the remanence. The simulated loops based on the 3D and 1D methods are consistent with each other and in good agreement with the measured loops for Sm-Co/a-Fe multilayers.
基金supported by the National Natural Science Foundation of China(No.11674344)the National Basic Research Program of China(973 program,No.2013CB932801)the Key Research Program of Frontier Sciences,Chinese Academy of Sciences(No.QYZDJ-SSW-SLH019-2)
文摘A general method was developed for promoting peptide assembly and protein polymerization to form nanoscale patterns on various surfaces with an atomic force microscope(AFM) operated in a liquid. By scanning solid surfaces with an AFM tip, we showed that peptide monomers assemble at a higher rate in the tip-scanned area compared to other regions. The promotion is attributed to the mechanical force applied by the scanning tip. This kind of mechanical-force-promoted assembly was also observed with different peptides on various substrates. The force promoting peptide assembly provides a simple and practical solution for preparing and building peptide and protein architectures for future nanodevices.
基金supported by the National Natural Science Foundation of China (No.51063003)the Ministry of Science and Technology Project (No.2009GJG10041)the Fundamental Research Funds for the Universities of Gansu (No.1105ZTC136)
文摘Superparamagnetic carbon-coated Fe3O4 nanoparticles with high magnetization(85 emu·g-(-1)) and high crystallinity were synthesized using polyethylene glycol-4000(PEG(4000)) as a carbon source.Fe3O4 water-based bilayer-surfactant-enveloped ferrofluids were subsequently prepared using sodium oleate and PEG(4000) as dispersants.Analyses using X-ray photoelectron spectroscopy,X-ray diffraction,and Fourier-transform infrared spectroscopy indicate that the Fe3O4 nanoparticles with a bilayer surfactant coating retain the inverse spinel-type structure and are successfully coated with sodium oleate and PEG(4000).Transmission electron microscopy,vibrating sample magnetometry,and particle-size analysis results indicate that the coated Fe3O4 nanoparticles also retain the good saturation magnetization of Fe3O4(79.6 emu·g^-1) and that the particle size of the bilayer-surfactant-enveloped Fe3O4 nanoparticles is 42.97 nm,which is substantially smaller than that of the unmodified Fe3O4 nanoparticles(486.2 nm).UV-vis and zeta-potential analyses reveal that the ferrofluids does not agglomerate for 120 h at a concentration of 4 g·L^-1,which indicates that the ferrofluids are highly stable.
基金supported by grants from the National Key R&D Program of China(No.2017YFA0700500)the National Natural Science Foundation of China(No.21635004)。
文摘Ionophore can prominently improve the ion permeability of cell membrane and disrupt cellular ion homeostasis.Most studies regarding ionophore facilitating ion transmembrane transport focus on artificial liquid-liquid interfaces,which have large difference from the actual environment of cell membrane.Here,we construct a supported lipid bilayeron a gold nanoparticles film modified ZnSe prism as an appropriate model of cell membrane to investigate the dynamic of the ion transport facilitated by ionophore using surface enhanced infrared absorption spectroscopy(SEIRAS).We find that the ion transmembrane transport consists of two steps:The ion transmembrane transport starts with the association/disassociation between ion and ionophore at the edge of lipid bilayer;The second step is the transfer of ion-ionophore complex across lipid bilayer.Our results show that the complex transfer across the lipid bilayer is the rate determining step.
文摘We present first results from a hybrid coplanar waveguide microfluidic tank circuit for monitoring lipid bilayer formation and fluctuations of integrated proteins. The coplanar waveguide is a radio frequency resonator operating at ~250 MHz. Changes within the integrated microfluidic chamber, such as vesicle bursting and subsequent nanopore formation alter the reflected signal, and can be detected with nanosecond resolution. We show experimental evidence of such alterations when the microfluidic channel is filled with giant unilamellar vesicles (GUVs). Subsequent settling and bursting of the GUVs form planar lipid bilayers, yielding a detectable change in the resonant frequency of the device. Results from finite element simulations of our device correlate well with our experimental evidence. These simulations also indicate that nanopore formation within the bilayer is easily detectable. The simulated structure allows for incorporation of microfluidics as well as simultaneous RF and DC recordings. The technique holds promise for high throughput drug screening applications and could also be used as an in-plane probe for various other applications. It opens up possibilities of exploring ion channels and other nano scale pores in a whole new frequency band allowing for operating at bandwidths well above the traditional DC methods.
基金Project supported by the National Natural Science Foundation of China.
文摘One of the detrimental effects of high salmity on plant cells is considered to be the result of an ion imbalance, particularly a high ratio of Na^+ to K^+ ions, in the cytoplasm. Such an imbalance is probably due to a great increase of entry of Na^+ ions into cells and a decline in absorption of K^+ ions under high-salinity conditions. Thus, plant cells
基金Project supported by the National Natural Science Foundation of China (Grant Nos.10174014,60271013,60490292,10574026,50625102,50871030,10974032,51171129,and 51201114)the National Basic Research Program of China (Grant Nos.2009CB929201 and 2010CB923401)
文摘Since the exchange bias (EB) effect was discovered in the Co/CoO core-shell nanoparticles, it has been extensively studied in various ferromagnet (FM)/antiferromagnet (AFM) bilayers due to its crucial role in spintronics devices. In this article, we review the investigation of the EB in our research group. First, we outline basic features of the EB, including the effects of the constituent layer thickness, the microstructure and magnetization of the FM layers, and we also discuss asymmetric magnetization reversal process in wedged-FM/AFM bilayers. Secondly, we discuss the mechanisms of the positive EB and the perpendicular EB. Thirdly, we demonstrate the hysteretic behavior of the angular dependence of the EB and analyze the EB training effect. Finally, we discuss the roles of the rotatable anisotropy in the two phenomena.
基金supported by the National Natural Science Foundation of China (Grant Nos 10874232,10774180 and 60621091)the Chinese Academy of Sciences (Grant No KJCX2.YW.W09-5)the Ministry of Science and Technology,China (Grant No 2005CB623602)
文摘We have investigated the exchange bias and training effect in the ferromagnetic/antiferromagnetic (FM/AF) heterostructures using a unified Monte Carlo dynamical approach. The magnetization of the uncompensated AF layer is still open after the first field cycling is finished. Our simulated results show obvious shift of hysteresis loops (exchange bias) and cycling dependence of exchange bias (training effect) when the temperature is below 45 K. The exchange bias field decreases with decreasing cooling rate or increasing temperature and the number of the field cycling. Essentially, these two effects can be explained on the basis of the microscopical coexistence of both reversible and irreversible moment reversals of the AF domains. Our simulations are useful to understand the real magnetization dynamics of such magnetic heterostructures.
文摘The current Chemistry at Harvard Molecular Mechanics (CHARMM) force field cannot accurately describe the properties of unsaturated phospholipid membranes. In this paper, a series of simulations was performed in which the Lennard- Jones (L-J) parameters of lipid acyl chains of dioleoylphosphatidylcholine (DOPC) were systematically adjusted. The results showed that adjustment of the L-J parameters in lipid acyl chains can significantly improve the current CHARMM force field. It was found that the L-J parameters have different influences on the order parameters of the top half and bottom half of the chain, separated by the cis double bond. The order parameters of the top half and the bottom half of the chain are related to the area/lipid and the length of the chain, respectively.
基金Project supported by the National Key Research and Development Program of China(Grant No.2018YFF01010701)the National Natural Science Foundation of China(Grant No.51332003)the Sichuan Science and Technology Program,China(Grant No.2018G20140)
文摘Skyrmion, as a quasi-particle structure, has attracted much attention due to its potential applications in future spintronic devices. Artificial skyrmion structure has aroused great interest as it can be stabilized at room temperature, without needing to incorporate materials with Dzyaloshinskii–Moriya interaction(DMI) into it. In this paper, it is found that the artificial skyrmion structure can be realized in CoCrPt/NiFe bilayers by micromagnetic simulations. The critical magnetic field of the core decreases as the diameter of the NiFe soft magnetic layer increases. The artificial skyrmion has excellent topological protection, and the critical magnetic field of plane is about 76 mT(760 Oe, 1 Oe = 79.5775 A·m-1). The external magnetic field plays a key role in determining the core diameter of the skyrmion, and the artificial skyrmion can be realized in CoCrPt/Cu/CoCrPt/NiFe four-layer with a diameter of 13 nm.
基金Supported by the National Basic Research Program of China under Grant Nos 2015CB921400 and 2011CB921802the National Natural Science Foundation of China under Grant Nos 11374057,11434003 and 11421404the research of Andreev reflection was supported as part of the SHINES,an Energy Frontier Research Center funded by the U.S.Department of Energy,Office of Science under Award SC0012670
文摘Superconductivity (SC) is one of the most intriguing physical phenomena in nature. Nucleation of SC has long been considered highly unfavorable if not impossible near ferromagnetism, in low dimensionality and, above all, out of non-superconductor. Here we report observation of SC with TC near 4K in Ni/Bi bilayers that defies all known paradigms of superconductivity, where neither ferromagnetic Ni film nor rhombohedra Bi film is superconducting in isolation. This highly unusual SC is independent of the growth order (Ni/Bi or Bi/Ni), but highly sensitive to the constituent layer thicknesses. Most importantly, the SC, distinctively non-s pairing, is triggered from, but does not occur at, the Bi/Ni interface. Using point contact Andreev reflection, we show evidences that the unique SC, naturally compatible with magnetism, is triplet p-wave pairing.
文摘Flexible electronic devices are often subjected to large and repeated deformation,so that their functional components such as metal interconnects need to sustain strains up to tens of percent,which is far beyond the intrinsic deformability of metal materials(~1%).To meet the stringent requirements of flexible electronics,metal/elastomer bilayers,a stretchable structure that consists of a metal film adhered to a stretchable elastomer substrate,have been developed to improve the stretch capability of metal interconnects.Previous studies have predicted that the metal/elastomer bilayers are much more stretchable than freestanding metal films.However,these investigations usually assume perfect bonding between the metal and elastomer layers.In this work,the effect of the metal/elastomer interface with a finite interfacial stiffness on the stretchability of bilayer structures is analyzed.The results show that the assumption of perfect interface(with infinite interfacial stiffness)may lead to an overestimation of the stretchability of bilayer structures.It is also demonstrated that increased adhesion between the metal and elastomer layers can enhance the stretchability of the metal layer.