Complex I (the NADH:ubiquinone oxidoreductase) of the mitochondrial respiratory chain is a complicated, multi-subunit, membrane- bound assembly and contains more than 40 different proteins in higher plants. In this...Complex I (the NADH:ubiquinone oxidoreductase) of the mitochondrial respiratory chain is a complicated, multi-subunit, membrane- bound assembly and contains more than 40 different proteins in higher plants. In this paper, we characterize the Arabidopsis homologue (designated as AtCIB22) of the B22 subunit of eukaryotic mitochondriai Complex I. AtCIB22 is a single-copy gene and is highly con- served throughout eukaryotes. AtCIB22 protein is located in mitochondria and the AtC1B22 gene is widely expressed in different tissues. Mutant Arabidopsis plants with a disrupted AtC1B22 gene display pleiotropic phenotypes including shorter roots, smaller plants and de- layed flowering. Stress analysis indicates that the AtC1B22 mutants' seed germination and early seedling growth are severely inhibited by sucrose deprivation stress but more tolerant to ethanol stress. Molecular analysis reveals that in moderate knockdown AtCIB22 mutants, genes including cell redox proteins and stress related proteins are significantly up-regulated, and that in severe knockdown AtCIB22 mu- tants, the alternative respiratory pathways including NDA1, NDB2, AOXla and AtPUMP1 are remarkably elevated. These data demon- strate that AtCIB22 is essential for plant development and mitochondrial electron transport chains in Arabidopsis. Our findings also en- hance our understanding about the physiological role of Complex I in plants.展开更多
In this paper we introduce the isometric extension problem of isometric mappings between two unit spheres. Some important results of the related problems are outlined and the recent progress is mentioned.
The central purpose of this paper is to illustrate that combining the recently developed theory of random conjugate spaces and the deep theory of Banach spaces can, indeed, solve some difficult measurability problems ...The central purpose of this paper is to illustrate that combining the recently developed theory of random conjugate spaces and the deep theory of Banach spaces can, indeed, solve some difficult measurability problems which occur in the recent study of the Lebesgue (or more general, Orlicz)-Bochner function spaces as well as in a slightly different way in the study of the random functional analysis but for which the measurable selection theorems currently available are not applicable. It is important that this paper provides a new method of studying a large class of the measurability problems, namely first converting the measurability problems to the abstract existence problems in the random metric theory and then combining the random metric theory and the relative theory of classical spaces so that the measurability problems can be eventually solved. The new method is based on the deep development of the random metric theory as well as on the subtle combination of the random metric theory with classical space theory.展开更多
基金supported by the National Basic Research Program of China (No. 2009CB941503)
文摘Complex I (the NADH:ubiquinone oxidoreductase) of the mitochondrial respiratory chain is a complicated, multi-subunit, membrane- bound assembly and contains more than 40 different proteins in higher plants. In this paper, we characterize the Arabidopsis homologue (designated as AtCIB22) of the B22 subunit of eukaryotic mitochondriai Complex I. AtCIB22 is a single-copy gene and is highly con- served throughout eukaryotes. AtCIB22 protein is located in mitochondria and the AtC1B22 gene is widely expressed in different tissues. Mutant Arabidopsis plants with a disrupted AtC1B22 gene display pleiotropic phenotypes including shorter roots, smaller plants and de- layed flowering. Stress analysis indicates that the AtC1B22 mutants' seed germination and early seedling growth are severely inhibited by sucrose deprivation stress but more tolerant to ethanol stress. Molecular analysis reveals that in moderate knockdown AtCIB22 mutants, genes including cell redox proteins and stress related proteins are significantly up-regulated, and that in severe knockdown AtCIB22 mu- tants, the alternative respiratory pathways including NDA1, NDB2, AOXla and AtPUMP1 are remarkably elevated. These data demon- strate that AtCIB22 is essential for plant development and mitochondrial electron transport chains in Arabidopsis. Our findings also en- hance our understanding about the physiological role of Complex I in plants.
基金supported by Research Foundation for Doctor Programme (Grant No. 20060055010)National Natural Science Foundation of China (Grant No. 10871101)
文摘In this paper we introduce the isometric extension problem of isometric mappings between two unit spheres. Some important results of the related problems are outlined and the recent progress is mentioned.
基金the National Natural Science Foundation of China (Grant No. 10471115)
文摘The central purpose of this paper is to illustrate that combining the recently developed theory of random conjugate spaces and the deep theory of Banach spaces can, indeed, solve some difficult measurability problems which occur in the recent study of the Lebesgue (or more general, Orlicz)-Bochner function spaces as well as in a slightly different way in the study of the random functional analysis but for which the measurable selection theorems currently available are not applicable. It is important that this paper provides a new method of studying a large class of the measurability problems, namely first converting the measurability problems to the abstract existence problems in the random metric theory and then combining the random metric theory and the relative theory of classical spaces so that the measurability problems can be eventually solved. The new method is based on the deep development of the random metric theory as well as on the subtle combination of the random metric theory with classical space theory.