为实现融合车辆运行状态的电池温度不一致性的精准评估诊断,设计并开展电动汽车自然驾驶试验,利用长周期、精细化的车辆运行数据,从微观运行片段的角度探究了电池温度一致性与驾驶行为的关联特性。通过驾驶人踩/松踏板的驾驶行为将车辆...为实现融合车辆运行状态的电池温度不一致性的精准评估诊断,设计并开展电动汽车自然驾驶试验,利用长周期、精细化的车辆运行数据,从微观运行片段的角度探究了电池温度一致性与驾驶行为的关联特性。通过驾驶人踩/松踏板的驾驶行为将车辆运行过程划分为A、B、C、D四类微观片段。分别针对4类片段,通过计算最大信息系数(Maximum Information Coefficient, MIC)得到了各驾驶行为参数与探针温度变异系数(Variation Coefficient of Probe Temperature, VCPT)的相关性,利用随机森林模型分析了驾驶行为参数对VCPT的重要性及影响机理,利用数据分组统计计算了驾驶行为参数对VCPT的量化影响效应。研究结果表明:驾驶行为参数与电池温度一致性具有弱相关性,且其对电池温度一致性的影响是非线性且非单调的;总体上车速类参数与电池温度一致性的相关性强于加速度和踏板类参数;对VCPT回归预测最重要的4项驾驶行为参数中,4类片段下均包含最大车速,B、C、D三类片段下均包含最大负向加速度;相比于高车速和高车速波动,高减速度驾驶行为引起的温度不一致性增幅是最显著的,4类片段下VCPT促进效应最显著的驾驶行为参数分别是最大负向加速度、平均负向加速度、最大负向加速度、车速标准差,其参数值85%分位点以上对应的VCPT均值比15%分位点以下的分别大9.44%、20.36%、13.05%、16.37%。研究结果可以支撑基于驾驶场景自适应阈值的电池温度不一致性评估诊断方法的提出,进而提高电动汽车电池安全预警准确率。展开更多
锂离子电池组内单体不一致性以及外界环境温度变化给其荷电状态(State of Charge, SOC)精确且高效估计带来挑战,而传统方法往往忽略电池不一致性影响或者计算复杂度高,难以对电池组进行高效且精确的SOC估计。为提升实际使用环境下锂电池...锂离子电池组内单体不一致性以及外界环境温度变化给其荷电状态(State of Charge, SOC)精确且高效估计带来挑战,而传统方法往往忽略电池不一致性影响或者计算复杂度高,难以对电池组进行高效且精确的SOC估计。为提升实际使用环境下锂电池组SOC估计精度和效率,开发了一种基于迁移模型的锂电池组SOC估计方法。首先,在传统二阶RC等效电路模型的基础上通过参数辨识、SOC与模型参数关系曲线拟合等工作完成迁移模型搭建,以此来应对温度变化对模型参数的影响并降低重复建模所需的工作量;之后,结合V_(min)+V_(max)模型(V_(min)+V_(max) Model, VVM)对电池组SOC进行了表征,充分考虑电池不一致性影响并且减少了电池组SOC估计的复杂程度。同时在电池组SOC估计的过程中融入权重因子,调整电池组输出SOC,防止电池组出现过充过放现象,保证电池组的使用安全;最后,设计开展了不同温度以及变温状态下的电池组试验测试,对电池组中单体级及模组级SOC估计精度进行了验证,并与传统的电池组SOC估计方法进行对比分析。验证结果表明:所提方法在几种不同温度下的单体及模组SOC估计结果均保持较好的计算精度;在变温状态下,电池组SOC估计方法仍然具有较高的精度。其中,单体电池SOC估计结果平均绝对误差最大为1.30%;在恒温状态下,电池组SOC估计结果的最大平均绝对误差为1.49%;而电池组SOC估计结果在变温状态下的最大平均绝对误差为1.21%。证明了所提方法具有计算精度高、计算复杂程度低以及安全可靠的优点。展开更多
Reducing heat accumulation within vehicles and ensuring appropriate vehicular temperature levels can lead to enhanced vehicle fuel economy,range,reliability,longevity,passenger comfort,and safety.Advancements in vehic...Reducing heat accumulation within vehicles and ensuring appropriate vehicular temperature levels can lead to enhanced vehicle fuel economy,range,reliability,longevity,passenger comfort,and safety.Advancements in vehicle thermal management remain key as new technologies,consumer demand,societal concerns,and government regulations emerge and evolve.This study summarizes several recent advances in vehicle thermal management technology and modeling,with a focus on three key areas:the cabin,electronics,and exterior components of vehicles.Cabin-related topics covered include methods for reducing thermal loads and improving heating,ventilation,and air-conditioning(HVAC)systems;and advancements in window glazing/tinting and vehicle surface treatments.For the thermal management of electronics,including batteries and insulated-gate bipolar transistors(IGBTs),active and passive cooling methods that employ heat pipes,heat sinks,jet impingement,forced convection,and phase-change materials are discussed.Finally,efforts to model and enhance the heat transfer of exterior vehicular components are reviewed while considering drag/friction forces and environmental effects.Despite advances in the field of vehicle thermal management,challenges still exist;this article provides a broad summary of the major issues,with recommendations for further study.展开更多
文摘为实现融合车辆运行状态的电池温度不一致性的精准评估诊断,设计并开展电动汽车自然驾驶试验,利用长周期、精细化的车辆运行数据,从微观运行片段的角度探究了电池温度一致性与驾驶行为的关联特性。通过驾驶人踩/松踏板的驾驶行为将车辆运行过程划分为A、B、C、D四类微观片段。分别针对4类片段,通过计算最大信息系数(Maximum Information Coefficient, MIC)得到了各驾驶行为参数与探针温度变异系数(Variation Coefficient of Probe Temperature, VCPT)的相关性,利用随机森林模型分析了驾驶行为参数对VCPT的重要性及影响机理,利用数据分组统计计算了驾驶行为参数对VCPT的量化影响效应。研究结果表明:驾驶行为参数与电池温度一致性具有弱相关性,且其对电池温度一致性的影响是非线性且非单调的;总体上车速类参数与电池温度一致性的相关性强于加速度和踏板类参数;对VCPT回归预测最重要的4项驾驶行为参数中,4类片段下均包含最大车速,B、C、D三类片段下均包含最大负向加速度;相比于高车速和高车速波动,高减速度驾驶行为引起的温度不一致性增幅是最显著的,4类片段下VCPT促进效应最显著的驾驶行为参数分别是最大负向加速度、平均负向加速度、最大负向加速度、车速标准差,其参数值85%分位点以上对应的VCPT均值比15%分位点以下的分别大9.44%、20.36%、13.05%、16.37%。研究结果可以支撑基于驾驶场景自适应阈值的电池温度不一致性评估诊断方法的提出,进而提高电动汽车电池安全预警准确率。
基金sponsored by the US Government under Other Transaction number W15QKN-13-9-0001 between the Consortium for Energy, Environment and Demilitarization, and the Government, with funding provided by the US Army Engineer Research & Development Center
文摘Reducing heat accumulation within vehicles and ensuring appropriate vehicular temperature levels can lead to enhanced vehicle fuel economy,range,reliability,longevity,passenger comfort,and safety.Advancements in vehicle thermal management remain key as new technologies,consumer demand,societal concerns,and government regulations emerge and evolve.This study summarizes several recent advances in vehicle thermal management technology and modeling,with a focus on three key areas:the cabin,electronics,and exterior components of vehicles.Cabin-related topics covered include methods for reducing thermal loads and improving heating,ventilation,and air-conditioning(HVAC)systems;and advancements in window glazing/tinting and vehicle surface treatments.For the thermal management of electronics,including batteries and insulated-gate bipolar transistors(IGBTs),active and passive cooling methods that employ heat pipes,heat sinks,jet impingement,forced convection,and phase-change materials are discussed.Finally,efforts to model and enhance the heat transfer of exterior vehicular components are reviewed while considering drag/friction forces and environmental effects.Despite advances in the field of vehicle thermal management,challenges still exist;this article provides a broad summary of the major issues,with recommendations for further study.