One of the major innovations awaiting in electron microscopy is full three-dimensional imaging at atomic resolution.Despite the success of aberration correction to deep sub-angstrom lateral resolution,spatial resoluti...One of the major innovations awaiting in electron microscopy is full three-dimensional imaging at atomic resolution.Despite the success of aberration correction to deep sub-angstrom lateral resolution,spatial resolution in depth is still far from atomic resolution.In scanning transmission electron microscopy(STEM),this poor depth resolution is due to the limitation of the illumination angle.To overcome this physical limitation,it is essential to implement a next-generation aberration corrector in STEM that can significantly improve the depth resolution.This review discusses the capability of depth sectioning for three-dimensional imaging combined with large-angle illumination STEM.Furthermore,the statistical analysis approach remarkably improves the depth resolution,making it possible to achieve three-dimensional atomic resolution imaging at oxide surfaces.We will also discuss the future prospects of three-dimensional imaging at atomic resolution by STEM depth sectioning.展开更多
The principle of scanning probe microscopes (SPM) was lust described by J. A. O’Keefe in the 1960s. In 1982, the scanning tunnelling microscope (STM), the first supreme example of SPM family, was developed; for which...The principle of scanning probe microscopes (SPM) was lust described by J. A. O’Keefe in the 1960s. In 1982, the scanning tunnelling microscope (STM), the first supreme example of SPM family, was developed; for which Binnig and Rohrer received the 1986 Nobel Prize in Physics. Shortly after that, in 1986 Binnig together with Quate and Gerber introduced the first atomic force microscope (AFM). Unlike the STM, the AFM展开更多
We present a homebuilt scanning tunneling microscope(STM)which employs an inner-wall polished sapphire guiding tube as a rail for the scanner to form a short tip-sample mechanical loop.The scanner is mounted on a squa...We present a homebuilt scanning tunneling microscope(STM)which employs an inner-wall polished sapphire guiding tube as a rail for the scanner to form a short tip-sample mechanical loop.The scanner is mounted on a square rod which is housed in the guiding tube and held by a spring strip.The stiff sapphire guiding tube allows the STM body to be made in a simple,compact and rigid form.Also the material of sapphire improves the thermal stability of the STM for its good thermal conductivity.To demonstrate the performance of the STM,high quality atomic-resolution STM images of high oriented pyrolytic graphite were given.展开更多
Determination and conceptualization of atomic structures of metallic glasses or amorphous alloys remain a grand challenge.Structural models proposed for bulk metallic glasses are still controversial owing to experimen...Determination and conceptualization of atomic structures of metallic glasses or amorphous alloys remain a grand challenge.Structural models proposed for bulk metallic glasses are still controversial owing to experimental difficulties in directly imaging the atom positions in three-dimensional structures.With the advanced atomic-resolution imaging,here we directly observed the atomic arrangements in atomically thin metallic glassy membranes obtained by vapor deposition.The atomic packing in the amorphous membrane is shown to have a fractal characteristic,with the fractal dimension depending on the atomic density.Locally,the atomic configuration for the metallic glass membrane is composed of many types of polygons with the bonding angles concentrated on 45°-55°.The fractal atomic structure is consistent with the analysis by the percolation theory,and may account for the enhanced relaxation dynamics and the easiness of glass transition as reported for the thin metallic glassy films or glassy surface.展开更多
For the past thirty years, intense efforts have been made to record atomic scale movies that reveal the movement of atoms in molecules, the fast dynamical processes in biological tissues and cells, and the changes in ...For the past thirty years, intense efforts have been made to record atomic scale movies that reveal the movement of atoms in molecules, the fast dynamical processes in biological tissues and cells, and the changes in the structure of a solid confined to nano-scale volumes. A combination of sub-nanometer spatial resolution with picosecond or even femtosecond temporal resolution is required for such atomic movies. Additional important information can be obtained when the energy of the electron beam transmitted through the sample is measured. The four dimensional (4D) spatially and temporally resolved ultrafast electron microscopy method is made possible by the extremely high detection efficiency that is reached in 4D electron microscopy. Using ultra-short electron bunches for the visualization of biological tissue can also improve the spatial resolution compared to conventional electron microscopes, thereby enabling the study of complex biological samples of relevance to the life sciences. Of particular interest to a broad audience is the possibility to create a video, and in the future, a real atomic movie, using 4D electron tomography.展开更多
Electron emission properties of single-walled carbon nanotubes (SWCNTs) assembled on a tungsten tip were investigated using field emission microscopy (FEM). The transmission electron microscopy (TEM) micrograph confir...Electron emission properties of single-walled carbon nanotubes (SWCNTs) assembled on a tungsten tip were investigated using field emission microscopy (FEM). The transmission electron microscopy (TEM) micrograph confirmed the existence of an SWCNT bundle on the W tip. Under appropriate experimental conditions,a series of FEM patterns with atomic resolution were obtained. These patterns arose possibly from the field emission of the open end of an individual (16,0) SWCNT protruding from the SWCNT bundle. The magnification factor and the resolution under our experimental conditions were calculated theoretically. If the value of the compression factor β was set at β= 1.76, the calculated value of the magnification factor was in agreement with the measured value. The resolving powerof FEM was determined by the resolution equation given by Gomer. The resolutionof 0.277 nm could be achieved under the typical electric field of 5.0×107 V/cm, which was close to the interatomic separation 0.246 nm between carbon atoms along the zigzag edge at the open end for the (16, 0) SWCNT. Consequently, our experimental results were further supported by our theoretical calculation.展开更多
Heterogeneous catalysts are the most important catalysts in industrial reactions. Nanocatalysts, with size ranging from hundreds of nanometers to the atomic scale, possess activities that are closely connected to thei...Heterogeneous catalysts are the most important catalysts in industrial reactions. Nanocatalysts, with size ranging from hundreds of nanometers to the atomic scale, possess activities that are closely connected to their structural characteristics such as particle size, surface morphology, and three-dimensional topography. Recently, the development of advanced analytical transmission electron microscopy(TEM) techniques, especially quantitative high-angle annular darkfield(HAADF) imaging and high-energy resolution spectroscopy analysis in scanning transmission electron microscopy(STEM) at the atomic scale, strengthens the power of(S)TEM in analyzing the structural/chemical information of heterogeneous catalysts. Three-dimensional reconstruction from two-dimensional projected images and the real-time recording of structural evolution during catalytic reactions using in-situ(S)TEM methods further broaden the scope of(S)TEM observation. The atomic-scale structural information obtained from high-resolution(S)TEM has proven to be of significance for better understanding and designing of new catalysts with enhanced performance.展开更多
Electrochemical Scanning TUnneling Microscopy (ECSTM) has been extended to characterizc polycrystalline silver electrode surfaces in iodide solution. Potential-dependcnt ordered and disordered structures of the silver...Electrochemical Scanning TUnneling Microscopy (ECSTM) has been extended to characterizc polycrystalline silver electrode surfaces in iodide solution. Potential-dependcnt ordered and disordered structures of the silver electrode as well as the iodine adsorption layer have been obscrved to coexist on polycrystalline silver electrode surfaces, for the first time. A very special column arrangement of the iodine adsorption layer, similar to the so called "ndssing row" type of structure has been obseryed. Some columns of the iodine adsorption layer roll over from one place to another along with the time and changing potential. A proposed model has been given to better describe the structure. The highly corrugated and loose surface structure of the polycrystalline surface are responsible for this special phenomenon.展开更多
Rutile TiO2 (001) quantum dots (or nano-marks) in different shapes were used to imitate uncleaved material surfaces or materials with rough surfaces. By numerical integration of the equation of motion of cantileve...Rutile TiO2 (001) quantum dots (or nano-marks) in different shapes were used to imitate uncleaved material surfaces or materials with rough surfaces. By numerical integration of the equation of motion of cantilever for silicon tip scanning along the [110] direction over the rutile TiO2 (001) quantum dots in ultra high vacuum (UHV), scanning routes were explored to achieve atomic resolution from frequency shift image. The tip-surface interaction forces were calculated from Lennard-Jones (12-6) potential by the Hamaker summation method. The calculated results showed that atomic resolution could be achieved by frequency shift image for TiO2 (001) surfaces of rhombohedral quantum dot scanning in a vertical route, and spherical cap quantum dot scanning in a superposition route.2007 Chinese Society of Particuology and Institute of Process Engineering, Chinese Academy of Sciences. Published by Elsevier B.V.展开更多
基金Project supported by JST-PRESTO (Grant No.JPMJPR1871)JST-FOREST (Grant No.JPMJFR2033)+2 种基金JST-ERATO (Grant No.JPMJER2202)KAKENHI JSPS (Grant Nos.JP19H05788,JP21H01614,and JP24H00373)“Next Generation Electron Microscopy”social cooperation program at the University of Tokyo。
文摘One of the major innovations awaiting in electron microscopy is full three-dimensional imaging at atomic resolution.Despite the success of aberration correction to deep sub-angstrom lateral resolution,spatial resolution in depth is still far from atomic resolution.In scanning transmission electron microscopy(STEM),this poor depth resolution is due to the limitation of the illumination angle.To overcome this physical limitation,it is essential to implement a next-generation aberration corrector in STEM that can significantly improve the depth resolution.This review discusses the capability of depth sectioning for three-dimensional imaging combined with large-angle illumination STEM.Furthermore,the statistical analysis approach remarkably improves the depth resolution,making it possible to achieve three-dimensional atomic resolution imaging at oxide surfaces.We will also discuss the future prospects of three-dimensional imaging at atomic resolution by STEM depth sectioning.
文摘The principle of scanning probe microscopes (SPM) was lust described by J. A. O’Keefe in the 1960s. In 1982, the scanning tunnelling microscope (STM), the first supreme example of SPM family, was developed; for which Binnig and Rohrer received the 1986 Nobel Prize in Physics. Shortly after that, in 1986 Binnig together with Quate and Gerber introduced the first atomic force microscope (AFM). Unlike the STM, the AFM
基金supported by the National Key RD Program of China (No.2017YFA0402903 and No.2016YFA0401003)National Natural Science Foundation of China (No.21505139, No.51627901,and No.11374278)+1 种基金Chinese Academy of Sciences Scientific Research Equipment (No.YZ201628)National Science Foundation for Young Scientists of China (No.11504339)
文摘We present a homebuilt scanning tunneling microscope(STM)which employs an inner-wall polished sapphire guiding tube as a rail for the scanner to form a short tip-sample mechanical loop.The scanner is mounted on a square rod which is housed in the guiding tube and held by a spring strip.The stiff sapphire guiding tube allows the STM body to be made in a simple,compact and rigid form.Also the material of sapphire improves the thermal stability of the STM for its good thermal conductivity.To demonstrate the performance of the STM,high quality atomic-resolution STM images of high oriented pyrolytic graphite were given.
基金This work was supported by the National Natural Science Foundation of China(51672307,51801230,51822107,and 51671121)the National Key Research and Development Program of China(2018YFA0703603)+2 种基金the National Natural Science Foundation of Guangdong Province(2019B030302010)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB30000000)Beijing Natural Science Foundation(Z190010).
文摘Determination and conceptualization of atomic structures of metallic glasses or amorphous alloys remain a grand challenge.Structural models proposed for bulk metallic glasses are still controversial owing to experimental difficulties in directly imaging the atom positions in three-dimensional structures.With the advanced atomic-resolution imaging,here we directly observed the atomic arrangements in atomically thin metallic glassy membranes obtained by vapor deposition.The atomic packing in the amorphous membrane is shown to have a fractal characteristic,with the fractal dimension depending on the atomic density.Locally,the atomic configuration for the metallic glass membrane is composed of many types of polygons with the bonding angles concentrated on 45°-55°.The fractal atomic structure is consistent with the analysis by the percolation theory,and may account for the enhanced relaxation dynamics and the easiness of glass transition as reported for the thin metallic glassy films or glassy surface.
文摘For the past thirty years, intense efforts have been made to record atomic scale movies that reveal the movement of atoms in molecules, the fast dynamical processes in biological tissues and cells, and the changes in the structure of a solid confined to nano-scale volumes. A combination of sub-nanometer spatial resolution with picosecond or even femtosecond temporal resolution is required for such atomic movies. Additional important information can be obtained when the energy of the electron beam transmitted through the sample is measured. The four dimensional (4D) spatially and temporally resolved ultrafast electron microscopy method is made possible by the extremely high detection efficiency that is reached in 4D electron microscopy. Using ultra-short electron bunches for the visualization of biological tissue can also improve the spatial resolution compared to conventional electron microscopes, thereby enabling the study of complex biological samples of relevance to the life sciences. Of particular interest to a broad audience is the possibility to create a video, and in the future, a real atomic movie, using 4D electron tomography.
基金the National Natural Science Foundation of China(Grant Nos.69890221 and 69971003)the MOST of China(No.2001CB610503)+1 种基金Key Foundation for Science and Technology Research of Education Ministry of China(No.00005)Scientific Research Foundation for Returned Oversea Chinese Scholars,State Education Commission
文摘Electron emission properties of single-walled carbon nanotubes (SWCNTs) assembled on a tungsten tip were investigated using field emission microscopy (FEM). The transmission electron microscopy (TEM) micrograph confirmed the existence of an SWCNT bundle on the W tip. Under appropriate experimental conditions,a series of FEM patterns with atomic resolution were obtained. These patterns arose possibly from the field emission of the open end of an individual (16,0) SWCNT protruding from the SWCNT bundle. The magnification factor and the resolution under our experimental conditions were calculated theoretically. If the value of the compression factor β was set at β= 1.76, the calculated value of the magnification factor was in agreement with the measured value. The resolving powerof FEM was determined by the resolution equation given by Gomer. The resolutionof 0.277 nm could be achieved under the typical electric field of 5.0×107 V/cm, which was close to the interatomic separation 0.246 nm between carbon atoms along the zigzag edge at the open end for the (16, 0) SWCNT. Consequently, our experimental results were further supported by our theoretical calculation.
基金Project supported by the Natural Science Foundation of China(Grant No.51622211)the Pioneer Hundred Talents Program of Chinese Academy of Sciences
文摘Heterogeneous catalysts are the most important catalysts in industrial reactions. Nanocatalysts, with size ranging from hundreds of nanometers to the atomic scale, possess activities that are closely connected to their structural characteristics such as particle size, surface morphology, and three-dimensional topography. Recently, the development of advanced analytical transmission electron microscopy(TEM) techniques, especially quantitative high-angle annular darkfield(HAADF) imaging and high-energy resolution spectroscopy analysis in scanning transmission electron microscopy(STEM) at the atomic scale, strengthens the power of(S)TEM in analyzing the structural/chemical information of heterogeneous catalysts. Three-dimensional reconstruction from two-dimensional projected images and the real-time recording of structural evolution during catalytic reactions using in-situ(S)TEM methods further broaden the scope of(S)TEM observation. The atomic-scale structural information obtained from high-resolution(S)TEM has proven to be of significance for better understanding and designing of new catalysts with enhanced performance.
文摘Electrochemical Scanning TUnneling Microscopy (ECSTM) has been extended to characterizc polycrystalline silver electrode surfaces in iodide solution. Potential-dependcnt ordered and disordered structures of the silver electrode as well as the iodine adsorption layer have been obscrved to coexist on polycrystalline silver electrode surfaces, for the first time. A very special column arrangement of the iodine adsorption layer, similar to the so called "ndssing row" type of structure has been obseryed. Some columns of the iodine adsorption layer roll over from one place to another along with the time and changing potential. A proposed model has been given to better describe the structure. The highly corrugated and loose surface structure of the polycrystalline surface are responsible for this special phenomenon.
文摘Rutile TiO2 (001) quantum dots (or nano-marks) in different shapes were used to imitate uncleaved material surfaces or materials with rough surfaces. By numerical integration of the equation of motion of cantilever for silicon tip scanning along the [110] direction over the rutile TiO2 (001) quantum dots in ultra high vacuum (UHV), scanning routes were explored to achieve atomic resolution from frequency shift image. The tip-surface interaction forces were calculated from Lennard-Jones (12-6) potential by the Hamaker summation method. The calculated results showed that atomic resolution could be achieved by frequency shift image for TiO2 (001) surfaces of rhombohedral quantum dot scanning in a vertical route, and spherical cap quantum dot scanning in a superposition route.2007 Chinese Society of Particuology and Institute of Process Engineering, Chinese Academy of Sciences. Published by Elsevier B.V.