期刊文献+

原子分辨的应变场测量与计算方法 被引量:1

Atomic-resolved strain field measurement and calculation methods
下载PDF
导出
摘要 材料在实际应用过程中往往处于应力状态,必定会导致其性能改变。因此,研究材料内部应变,实现材料应变分布的原子尺度高精度测量,可以有效建立微观结构-应变-物理性能的相关性,为材料实际应用提供必要的理论支撑。本文系统综述了应变测量和计算常用的几种方法;讨论了各种方法的适用范围、优缺点、精度以及准确度;并提出了一些进一步提升应变测量精度的方案,以期为应变测量和计算方法的发展提供参考。 Materials are often under stress in the actual application process,which will inevitably lead to changes in their properties.The study of the internal strain of materials and the realization of the atomic scale high-precision measurement of strain distribution of materials can establish the correlation of microstructure-strain-physical properties effectively,which provide necessary theoretical support for the actual application of materials.This article systematically reviews several commonly used methods for strain measurement and calculation;discusses the conditions and limitations of various methods,as well as their accuracy and accuracy;and proposes some solutions to further improve the accuracy of strain measurement methods,with a view to provide reference for the accuracy and precision of the strain measurement and calculation methods.
作者 杨国 杨成鹏 毛圣成 王立华 张泽 韩晓东 YANG Guo;YANG Cheng-peng;MAO Sheng-cheng;WANG Li-hua;ZHANG Ze;HAN Xiao-dong(Beijing Key Laboratory of Advanced Materials Microstructure and Properties,Institute of Microstructure and Properties of Advanced Materials,Beijing University of Technology,Beijing 100124;Department of Materials Science and Engineering,Zhejiang University,Hangzhou Zhejiang 310008,China)
出处 《电子显微学报》 CAS CSCD 北大核心 2020年第6期752-762,共11页 Journal of Chinese Electron Microscopy Society
基金 北京卓越青年科学家计划资助项目(No.BJJWZYJH01201910005018) 国家重点研发计划资助项目(No.2017YFB0305501) 国家自然科学基金资助项目(No.11722429) 北京市自然科学基金重点资助项目(No.Z180014).
关键词 原子分辨率 HRTEM 应变测量 应变场 几何相位法(GPA) 峰对分析法(PPA) Atomic resolution HRTEM strain measurement strain field geometric phase approach(GPA) peak pair algorithm(PPA)
  • 相关文献

参考文献5

二级参考文献43

  • 1郭可信.晶体电子显微学与诺贝尔奖[J].电子显微学报,1983,2(2):1-6. 被引量:2
  • 2Knoll M,Ruska E.Z Physik,1932,78:318. 被引量:1
  • 3Haider M,et al.Nature,1998,392:768. 被引量:1
  • 4Kao C K,Hockham G A.Proceedings of The Institution of Electrical Engineers-London[C].1966,113:1151. 被引量:1
  • 5Ohtomo A,Muller D A,Grazul J.L,Hwang H Y.Nature,2002,419:378. 被引量:1
  • 6Huang J Y,Wang X D,Wang Z L.Nano Letters,2006,6:2325. 被引量:1
  • 7Jia C L,Lentzen M,Urban K.Science,2003,299:870. 被引量:1
  • 8Habas S,Lee H,Radmilovic V,et al.Nature Materials,2007,6:693. 被引量:1
  • 9Gudiksen M S,Lauhon L J,Wang J,et al.Nature,2002,415:617. 被引量:1
  • 10Ke C H,Espinosa H D.Small,2006,2:1484. 被引量:1

共引文献22

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部