The p27Kip1 is a cell cycle repressor protein that regulates primarily the cell cycle transition from G1 to S phase and hence the DNA replication is in the S phase and cell division in the M phase. Expression of p27Ki...The p27Kip1 is a cell cycle repressor protein that regulates primarily the cell cycle transition from G1 to S phase and hence the DNA replication is in the S phase and cell division in the M phase. Expression of p27Kip1 protein has dual roles for both cancer prevention and promotion. For example, numerous nutritional and chemopreventive anti-cancer agents specifically increase the expression of p27Kip1 protein without directly affecting the expression of any other cell cycle regulatory proteins. On the other hand, pro-cancer agents (like glucose, insulin and other growth factors frequently seen in obesity and/or diabetes) specifically decrease the expression of p27Kip1 protein without directly affecting the expression of any other cell cycle regulatory proteins. Unlike expression of any other cell cycle regulatory proteins, expression of p27Kip1 protein is very unusual. The mRNA of p27Kip1 has a very long and unusual 5’-untranslated region (from -575 to -1 in human). It appears that the 5’-untranslated region of p27Kip1 mRNA forms two alternative secondary structures. One increases the expression of p27Kip1 protein when anti-cancer agents are added and another decrease the expression of p27K1p1 when pro-cancer agents are added. For this short concept proposal, Dr. Albert Einstein’s “visualized thought experiments (German: Gedanken experiment)” were used as a fundamental tool for understanding how either anti- or pro-cancer agents bring the primary structure of the 5’-untranslated region of p27Kip1 mRNA into two alternative secondary structures, thereby either increasing or decreasing, respectively, the translation initiation of p27Kip1 protein.展开更多
In this study, novel mono/di-nuclear Cu(p-2-bmb)(OH)(Cl O4)(1) and Co2(p-2-bmb)2Cl4(2)(p-2-bmb = 1-((2-(pyridin-2-yl)-benzoimidazol-1-yl)methyl)-1H-benzotriazole) complexes with the nitrogen hetero...In this study, novel mono/di-nuclear Cu(p-2-bmb)(OH)(Cl O4)(1) and Co2(p-2-bmb)2Cl4(2)(p-2-bmb = 1-((2-(pyridin-2-yl)-benzoimidazol-1-yl)methyl)-1H-benzotriazole) complexes with the nitrogen heterocyclic benzimidazole-based ligand were synthesized and characterized. The two complexes showed antiproliferative effects in various carcinoma cell lines, especially complex 1 in the SMMC7721 tumor cell line. Complex 1 was also able to pass through the cell membrane and enter the nucleus and mitochondrion. An analysis of in vitro chemical nuclease activity revealed that complex 1 partially intercalated to calf thymus DNA and exhibited strong unwinding activity against p BR322 superhelical plasmid DNA. The comet assay and flow cytometry analysis confirmed that 1 caused extensive DNA damage and arrested SMMC7721 tumor cells at G2/M phase of the cell cycle, leading to loss of mitochondrial membrane potential and apoptosis. These results suggest that these benzimidazole-based metal complexes could be potential anti-cancer agents.展开更多
Histone deacetylases(HDACs) are considered to be among the most promising targets for the development of anti-cancer drugs,and HDAC inhibitors(HDACIs) have become a promising class of anti-cancer drugs.To explore ...Histone deacetylases(HDACs) are considered to be among the most promising targets for the development of anti-cancer drugs,and HDAC inhibitors(HDACIs) have become a promising class of anti-cancer drugs.To explore whether thioacetyl group as the zinc binding group(ZBG) and a slight change in the hydrophobicity of the recognition domain of HDACIs could alter their activities,we synthesized a series of cyclo[-L-Am7(SAc)-Aib-L-Phe(n-Cl)D-Pro-] and evaluated their HDAC-inhibitory and antiproliferative activities.The results show that these peptides could inhibit HDAC at 10-9 mol/L level,and could selectively inhibit the proliferation of three human cancer cell lines with IC 50 at 10-6 mol/L level.Docking study was conducted to examine the mechanisms by which these peptides interact with HDAC2.It appeared that a zinc ion in the active site of HDAC was coordinated by the carbonyl oxygen atom of the ZBG in the inhibitor.Both the ZBG domain of all the peptides and the surface recognition domain of cyclo[-L-Am7(SAc)-Aib-L-Phe(o-Cl)-D-Pro-] and that of cyclo[-L-Am7(SAc)-Aib-L-Phe(m-Cl)-D-Pro-] interacted with HDAC2 via hydrogen bonding.Hydrophobic interaction has been considered to provide favorable contributions to stabilizing the complexes,and the introduction of a chlorine atom at the aromatic ring on the L-Phe position of these peptides affected the interaction between each of these inhibitors and the enzyme,resulting in slight change in the structure of the surface recognition domain of the peptides.展开更多
文摘The p27Kip1 is a cell cycle repressor protein that regulates primarily the cell cycle transition from G1 to S phase and hence the DNA replication is in the S phase and cell division in the M phase. Expression of p27Kip1 protein has dual roles for both cancer prevention and promotion. For example, numerous nutritional and chemopreventive anti-cancer agents specifically increase the expression of p27Kip1 protein without directly affecting the expression of any other cell cycle regulatory proteins. On the other hand, pro-cancer agents (like glucose, insulin and other growth factors frequently seen in obesity and/or diabetes) specifically decrease the expression of p27Kip1 protein without directly affecting the expression of any other cell cycle regulatory proteins. Unlike expression of any other cell cycle regulatory proteins, expression of p27Kip1 protein is very unusual. The mRNA of p27Kip1 has a very long and unusual 5’-untranslated region (from -575 to -1 in human). It appears that the 5’-untranslated region of p27Kip1 mRNA forms two alternative secondary structures. One increases the expression of p27Kip1 protein when anti-cancer agents are added and another decrease the expression of p27K1p1 when pro-cancer agents are added. For this short concept proposal, Dr. Albert Einstein’s “visualized thought experiments (German: Gedanken experiment)” were used as a fundamental tool for understanding how either anti- or pro-cancer agents bring the primary structure of the 5’-untranslated region of p27Kip1 mRNA into two alternative secondary structures, thereby either increasing or decreasing, respectively, the translation initiation of p27Kip1 protein.
基金supported by the National Natural Science Foundation of China (Nos. 21371046, 21401041)
文摘In this study, novel mono/di-nuclear Cu(p-2-bmb)(OH)(Cl O4)(1) and Co2(p-2-bmb)2Cl4(2)(p-2-bmb = 1-((2-(pyridin-2-yl)-benzoimidazol-1-yl)methyl)-1H-benzotriazole) complexes with the nitrogen heterocyclic benzimidazole-based ligand were synthesized and characterized. The two complexes showed antiproliferative effects in various carcinoma cell lines, especially complex 1 in the SMMC7721 tumor cell line. Complex 1 was also able to pass through the cell membrane and enter the nucleus and mitochondrion. An analysis of in vitro chemical nuclease activity revealed that complex 1 partially intercalated to calf thymus DNA and exhibited strong unwinding activity against p BR322 superhelical plasmid DNA. The comet assay and flow cytometry analysis confirmed that 1 caused extensive DNA damage and arrested SMMC7721 tumor cells at G2/M phase of the cell cycle, leading to loss of mitochondrial membrane potential and apoptosis. These results suggest that these benzimidazole-based metal complexes could be potential anti-cancer agents.
基金Supported by the National Major Scientific and Technological Special Project of China(No.2011ZX09501-001)
文摘Histone deacetylases(HDACs) are considered to be among the most promising targets for the development of anti-cancer drugs,and HDAC inhibitors(HDACIs) have become a promising class of anti-cancer drugs.To explore whether thioacetyl group as the zinc binding group(ZBG) and a slight change in the hydrophobicity of the recognition domain of HDACIs could alter their activities,we synthesized a series of cyclo[-L-Am7(SAc)-Aib-L-Phe(n-Cl)D-Pro-] and evaluated their HDAC-inhibitory and antiproliferative activities.The results show that these peptides could inhibit HDAC at 10-9 mol/L level,and could selectively inhibit the proliferation of three human cancer cell lines with IC 50 at 10-6 mol/L level.Docking study was conducted to examine the mechanisms by which these peptides interact with HDAC2.It appeared that a zinc ion in the active site of HDAC was coordinated by the carbonyl oxygen atom of the ZBG in the inhibitor.Both the ZBG domain of all the peptides and the surface recognition domain of cyclo[-L-Am7(SAc)-Aib-L-Phe(o-Cl)-D-Pro-] and that of cyclo[-L-Am7(SAc)-Aib-L-Phe(m-Cl)-D-Pro-] interacted with HDAC2 via hydrogen bonding.Hydrophobic interaction has been considered to provide favorable contributions to stabilizing the complexes,and the introduction of a chlorine atom at the aromatic ring on the L-Phe position of these peptides affected the interaction between each of these inhibitors and the enzyme,resulting in slight change in the structure of the surface recognition domain of the peptides.