Rock bursts signify extreme behavior in coal mine strata and severely threaten the safety of the lives of miners, as well as the effectiveness and productivity of miners. In our study, an elastic-plastic-brittle model...Rock bursts signify extreme behavior in coal mine strata and severely threaten the safety of the lives of miners, as well as the effectiveness and productivity of miners. In our study, an elastic-plastic-brittle model for the deformation and failure of coal/rock was established through theoretical analyses, laboratory experiments and field testing, simulation and other means, which perfectly predict sudden and delayed rock bursts. Based on electromagnetic emission (EME), acoustic emission (AE) and microseism (MS) effects in the process from deformation until impact rupture of coal-rock combination samples, a multi-parameter identification of premonitory technology was formed, largely depending on these three forms of emission. Thus a system of classification for forecasting rock bursts in space and time was established. We have presented the intensity weakening theory for rock bursts and a strong-soft-strong (3S) structural model for controlling the impact on rock surrounding roadways, with the objective of laying a theoretical foundation and establishing references for parameters for the weakening control of rock bursts. For the purpose of prevention, key technical parameters of directional hydraulic fracturing are revealed. Based on these results, as well as those from deep-hole controlled blasting in coal seams and rock, integrated control techniques were established and anti-impact hydraulic props, suitable for roadways subject to hazards from rockbursts have also been developed. These technologies have been widely used in most coal mines in China, subject to these hazards and have achieved remarkable economic and social benefits.展开更多
Block-flexure toppling failure is frequently encountered in interbedded anti-inclined rock(IAR)slopes,and seriously threatens the construction of hydropower infrastructure.In this study,we first investigated the Lean ...Block-flexure toppling failure is frequently encountered in interbedded anti-inclined rock(IAR)slopes,and seriously threatens the construction of hydropower infrastructure.In this study,we first investigated the Lean Reservoir area’s geological setting and the Linda landslide’s characteristics.Then,uniform design and random design were used to design 110 training datasets and 31 testing datasets,respectively.Afterwards,the toppling response was obtained by using the discrete element code.Finally,support vector regression was used to obtain the influence weights of 21 impact factors.The results show that the influence weight of the slope angle and rock formation dip angle on the toppling deformation among tertiary impact factors is 25.96%and 17.28%,respectively,which are much greater than the other 19 impact factors within the research range.For the primary impact factors,the influence weight is sorted from large to small as slope geometry parameters,joints parameters,and rock mechanics parameters.Joints parameters,especially the geometric parameters,cannot be ignored when evaluating the stability of IAR slopes.Through numerical simulation,it was qualitatively determined that failure surfaces of slopes were controlled by cross joints and that the rocks in the slope toe play a role in preventing slope deformation.展开更多
基金Project 2010CB226805 supported by the National Natural Science Foundation of Chinaprovided by the National Basic Research Program of China (2010CB226805)+1 种基金the National Eleventh Five-Year Key Science & Technology Project (2006BAK04B02, 2006BAK04B06)the National Natural Science Foundation of China (50474068), are gratefully acknowledged
文摘Rock bursts signify extreme behavior in coal mine strata and severely threaten the safety of the lives of miners, as well as the effectiveness and productivity of miners. In our study, an elastic-plastic-brittle model for the deformation and failure of coal/rock was established through theoretical analyses, laboratory experiments and field testing, simulation and other means, which perfectly predict sudden and delayed rock bursts. Based on electromagnetic emission (EME), acoustic emission (AE) and microseism (MS) effects in the process from deformation until impact rupture of coal-rock combination samples, a multi-parameter identification of premonitory technology was formed, largely depending on these three forms of emission. Thus a system of classification for forecasting rock bursts in space and time was established. We have presented the intensity weakening theory for rock bursts and a strong-soft-strong (3S) structural model for controlling the impact on rock surrounding roadways, with the objective of laying a theoretical foundation and establishing references for parameters for the weakening control of rock bursts. For the purpose of prevention, key technical parameters of directional hydraulic fracturing are revealed. Based on these results, as well as those from deep-hole controlled blasting in coal seams and rock, integrated control techniques were established and anti-impact hydraulic props, suitable for roadways subject to hazards from rockbursts have also been developed. These technologies have been widely used in most coal mines in China, subject to these hazards and have achieved remarkable economic and social benefits.
基金supported by the National Key Scientific Instrument and Equipment Development Projects of China(No.41827808)the Major Program of the National Natural Science Foundation of China(No.42090055).
文摘Block-flexure toppling failure is frequently encountered in interbedded anti-inclined rock(IAR)slopes,and seriously threatens the construction of hydropower infrastructure.In this study,we first investigated the Lean Reservoir area’s geological setting and the Linda landslide’s characteristics.Then,uniform design and random design were used to design 110 training datasets and 31 testing datasets,respectively.Afterwards,the toppling response was obtained by using the discrete element code.Finally,support vector regression was used to obtain the influence weights of 21 impact factors.The results show that the influence weight of the slope angle and rock formation dip angle on the toppling deformation among tertiary impact factors is 25.96%and 17.28%,respectively,which are much greater than the other 19 impact factors within the research range.For the primary impact factors,the influence weight is sorted from large to small as slope geometry parameters,joints parameters,and rock mechanics parameters.Joints parameters,especially the geometric parameters,cannot be ignored when evaluating the stability of IAR slopes.Through numerical simulation,it was qualitatively determined that failure surfaces of slopes were controlled by cross joints and that the rocks in the slope toe play a role in preventing slope deformation.