风光互补发电系统作为一种绿色能源可独立对外部供电,无线电能传输(wireless power transfer)技术又提供了一种方便快捷的能量传输方式。结合两者的优点,将风光互补发电系统的输出作为WPT谐振电路的输入端,利用无线电能传输技术对负载供...风光互补发电系统作为一种绿色能源可独立对外部供电,无线电能传输(wireless power transfer)技术又提供了一种方便快捷的能量传输方式。结合两者的优点,将风光互补发电系统的输出作为WPT谐振电路的输入端,利用无线电能传输技术对负载供电,利用了绿色能源的同时又能节约电力运输成本。分析了磁耦合感应与磁耦合谐振之间的联系以及平面线圈频率分裂的相关因素,针对目前小型平面谐振无线充电设备随发射端和接收端距离的变化而产生传输波动的问题,在发射端采用XKT-408集成电路进行自动频率锁定,在发生频率分裂时调整线圈偏移角度可削弱两线圈的互感系数来抑制频率分裂现象,提高了接收线圈峰值电压。最后搭建了风光互补发电无线能量传输系统,在径向距离50 mm处可成功对负载充电,该模型为风光互补发电无线充电系统的应用提供了参考。展开更多
Single-station passive localization technology avoids the complex time synchronization and information exchange between multiple observatories, and is increasingly important in electronic warfare. Based on a single mo...Single-station passive localization technology avoids the complex time synchronization and information exchange between multiple observatories, and is increasingly important in electronic warfare. Based on a single moving station localization system, a new method with high localization precision and numerical stability is proposed when the measurements from multiple disjoint sources are subject to the same station position and velocity displacement. According to the available measurements including the angle-of-arrival(AOA), time-of-arrival(TOA), and frequency-of-arrival(FOA), the corresponding pseudo linear equations are deduced. Based on this, a structural total least squares(STLS) optimization model is developed and the inverse iteration algorithm is used to obtain the stationary target location. The localization performance of the STLS localization algorithm is derived, and it is strictly proved that the theoretical performance of the STLS method is consistent with that of the constrained total least squares method under first-order error analysis, both of which can achieve the Cramér-Rao lower bound accuracy. Simulation results show the validity of the theoretical derivation and superiority of the new algorithm.展开更多
文摘风光互补发电系统作为一种绿色能源可独立对外部供电,无线电能传输(wireless power transfer)技术又提供了一种方便快捷的能量传输方式。结合两者的优点,将风光互补发电系统的输出作为WPT谐振电路的输入端,利用无线电能传输技术对负载供电,利用了绿色能源的同时又能节约电力运输成本。分析了磁耦合感应与磁耦合谐振之间的联系以及平面线圈频率分裂的相关因素,针对目前小型平面谐振无线充电设备随发射端和接收端距离的变化而产生传输波动的问题,在发射端采用XKT-408集成电路进行自动频率锁定,在发生频率分裂时调整线圈偏移角度可削弱两线圈的互感系数来抑制频率分裂现象,提高了接收线圈峰值电压。最后搭建了风光互补发电无线能量传输系统,在径向距离50 mm处可成功对负载充电,该模型为风光互补发电无线充电系统的应用提供了参考。
基金Project supported by the National Natural Science Foundation of China(Nos.61201381,61401513,and 61772548)the China Postdoctoral Science Foundation(No.2016M592989)+1 种基金the Self-Topic Foundation of Information Engineering University,China(No.2016600701)the Outstanding Youth Foundation of Information Engineering University,China(No.2016603201)
文摘Single-station passive localization technology avoids the complex time synchronization and information exchange between multiple observatories, and is increasingly important in electronic warfare. Based on a single moving station localization system, a new method with high localization precision and numerical stability is proposed when the measurements from multiple disjoint sources are subject to the same station position and velocity displacement. According to the available measurements including the angle-of-arrival(AOA), time-of-arrival(TOA), and frequency-of-arrival(FOA), the corresponding pseudo linear equations are deduced. Based on this, a structural total least squares(STLS) optimization model is developed and the inverse iteration algorithm is used to obtain the stationary target location. The localization performance of the STLS localization algorithm is derived, and it is strictly proved that the theoretical performance of the STLS method is consistent with that of the constrained total least squares method under first-order error analysis, both of which can achieve the Cramér-Rao lower bound accuracy. Simulation results show the validity of the theoretical derivation and superiority of the new algorithm.