Electrochemical deposition and nucleation of aluminum on tungsten electrode from AlCl3-NaCl melts were studied by cyclic voltammetry, chronopotentiometry and chronoamperometry. Cyclic voltammetry and chronopotentiomet...Electrochemical deposition and nucleation of aluminum on tungsten electrode from AlCl3-NaCl melts were studied by cyclic voltammetry, chronopotentiometry and chronoamperometry. Cyclic voltammetry and chronopotentiometry analyses showed that Al (Ⅲ) was reduced at 200℃ in two consecutive steps in an electrolyte of molten AlCl3-NaCl system with a composition 52:48 molar ratio. The current-time characteristics of nucleation aluminum on tungsten showed a strong dependence on overpotentials. Chronoamperometry showed that the deposition process of aluminum on tungsten was controlled by an instantaneous nucleation with a hemispherical diffusion-controlled growth mechanism. The results could lead to a better understanding of the AlCl3-NaCl melt system that has technological importance in electrodeposition of metals as well as in rechargeable batteries.展开更多
基金supported by the National Basic Research Program of China (No.2007CB210305)the National Natural Science Foundation of China (Grant No.50674031).
文摘Electrochemical deposition and nucleation of aluminum on tungsten electrode from AlCl3-NaCl melts were studied by cyclic voltammetry, chronopotentiometry and chronoamperometry. Cyclic voltammetry and chronopotentiometry analyses showed that Al (Ⅲ) was reduced at 200℃ in two consecutive steps in an electrolyte of molten AlCl3-NaCl system with a composition 52:48 molar ratio. The current-time characteristics of nucleation aluminum on tungsten showed a strong dependence on overpotentials. Chronoamperometry showed that the deposition process of aluminum on tungsten was controlled by an instantaneous nucleation with a hemispherical diffusion-controlled growth mechanism. The results could lead to a better understanding of the AlCl3-NaCl melt system that has technological importance in electrodeposition of metals as well as in rechargeable batteries.