This study aims to investigate the abundance of AMF according to soil properties and altitudes in different cacao plantations of Cameroon. Physico-chemical analyses were made on soil samples collected from three agro-...This study aims to investigate the abundance of AMF according to soil properties and altitudes in different cacao plantations of Cameroon. Physico-chemical analyses were made on soil samples collected from three agro-ecological zones. Soil samples were also used to evaluate directly the AMF abundance following the various altitudes and after trapping by sorghum plant. The results showed that soil properties, AMF spore abundances and colonization fluctuated significantly at different altitudes. The most represented texture was sandy loam. The bimodal zone presented a homogeneous texture (sandy loam) in all its localities. Cacao soil chemical characteristics showed that, the highest nitrogen rate (0.47%;p 0.05, Scott-Knott test) was recorded at Melong in a monomodal zone while Tonga in the Western highlands displayed the lowest rate (0.13%). Soil P concentration was significantly high in monomodal zones (Mbanga and Melong). Soil pH level indicated that the soil from Tonga in the Western highlands was neutral (pH = 6.67), and soils of other localities under study were acidic with the lowest (4.75) pH level recorded at Melong in a monomodal zone. In soil samples, the highest spore density (1.03 spores/g soil) was observed at Ntui in Bimodal zone, while the lowest spore density (0.26 spores/g soil) was observed at Bafang in the Western highlands. Root colonization showed that the sample from Bokito in a bimodal zone displayed the best frequency of mycorrhization (86.11%) while the sample from Bafang in the Western highlands recorded the lowest (27.11%). The PCA analysis highlighted that available phosphorus, pH and altitude all strongly correlated with AMF root colonization ability and can be used as a predictor of AMF colonization ability in cacao rhizosphere.展开更多
Background,aim,and scope Certain physicochemical indexes of topsoil are closely related to climatic factors including temperature,and precipitation.Understanding the relationship between modern topsoil properties and ...Background,aim,and scope Certain physicochemical indexes of topsoil are closely related to climatic factors including temperature,and precipitation.Understanding the relationship between modern topsoil properties and climatic factors is essential for quantitative paleoclimate reconstruction.Motuo located in the eastern Himalayas,exhibits a significant elevation gradient of over 7000 m from Nnamjagbarwa Peak(7782 m a.s.l.)to the Baxika(150 m a.s.l.).This region features a complete vertical zonation of vegetation,from alpine meadow to tropical forest,presenting an ideal place to investigate the relationships among vegetation,soil and climate conditions across altitudinal gradients.This study aims to explore the vertical variations in the physicochemical composition of topsoil and its relationship with temperature and precipitation.Materials and methods Twenty-seven topsoil samples were collected at 100 m intervals from 800 m to 3600 m a.s.l.along the southern slope of the Himalayas.Grain size,magnetic susceptibility and geochemical elements were measured to discuss the vertical variation characteristics of topsoil composition and their correlation with climatic factors.Results(1)The grain size of topsoil at different altitudes in Motuo is mainly composed of sand accounting for an averaged 53.2%,followed by silt and clay.(2)In the mixed forest zone,frequency dependent magnetic susceptibility(χfd%)shows a clear relationship with altitude,and clay is positively correlated with both altitude and climatic factors.(3)The oxides of topsoil in this area mainly consist of SiO_(2),Al_(2)O_(3)and Fe_(2)O_(3),followed by MgO,CaO,Na_(2)O and K_(2)O,with slight variations in the primary components at different altitudes.The sensitivity of elements to climate varies across different altitudes and vegetation zone,likely due to the region’s complex topography and vegetation.(4)Physical and biological weathering dominates in the broad-leaved forest zone of Motuo,while chemical weathering is more prominent in the coniferous forest展开更多
In this article, 1650 herbarium specimens of representatives of the genus Gagea Salisb. were used as research material from the collections of the National Herbarium of Uzbekistan (TASH). It presents a geographical co...In this article, 1650 herbarium specimens of representatives of the genus Gagea Salisb. were used as research material from the collections of the National Herbarium of Uzbekistan (TASH). It presents a geographical coordinate system, habitats, phenology, and economic values. The distribution of species in Uzbekistan was indicated by the phytogeographic regions of the country. The herbarium material of Gagea Salisb. has been studied in TASH, SAMSU and MSU. The TASH Herbarium presents samples from 1914 to 2019. The review was written using information published between 1988 and 2019 from a number of reliable sources, including Science Direct, Springer, PubMed, EMBASE and Wikipedia.展开更多
The navigation problem of the lifting reentry vehicles has attracted much research interest in the past decade. This paper researches the navigation in the blackout zone during the reentry phase of the aircraft, when ...The navigation problem of the lifting reentry vehicles has attracted much research interest in the past decade. This paper researches the navigation in the blackout zone during the reentry phase of the aircraft, when the communication signals are attenuated and even interrupted by the blackout zone. However, when calculating altitude, a pure classic inertial navigation algorithm appears imprecise and divergent. In order to obtain a more precise aircraft altitude, this paper applies an integrated navigation method based on inertial navigation algorithms, which uses drag derived altitude to aid the inertial navigation during the blackout zone. This method can overcome the shortcomings of the inertial navigation system and improve the navigation accuracy. To further improve the navigation accuracy, the applicable condition and the main error factors, such as the atmospheric coefficient error and drag coefficient error are analyzed in detail. Then the damping circuit design of the navigation control system and the damping coefficients determination is introduced. The feasibility of the method is verified by the typical reentry trajectory simulation, and the influence of the iterative times on the accuracy is analyzed. Simulation results show that iterative three times achieves the best effect.展开更多
文摘This study aims to investigate the abundance of AMF according to soil properties and altitudes in different cacao plantations of Cameroon. Physico-chemical analyses were made on soil samples collected from three agro-ecological zones. Soil samples were also used to evaluate directly the AMF abundance following the various altitudes and after trapping by sorghum plant. The results showed that soil properties, AMF spore abundances and colonization fluctuated significantly at different altitudes. The most represented texture was sandy loam. The bimodal zone presented a homogeneous texture (sandy loam) in all its localities. Cacao soil chemical characteristics showed that, the highest nitrogen rate (0.47%;p 0.05, Scott-Knott test) was recorded at Melong in a monomodal zone while Tonga in the Western highlands displayed the lowest rate (0.13%). Soil P concentration was significantly high in monomodal zones (Mbanga and Melong). Soil pH level indicated that the soil from Tonga in the Western highlands was neutral (pH = 6.67), and soils of other localities under study were acidic with the lowest (4.75) pH level recorded at Melong in a monomodal zone. In soil samples, the highest spore density (1.03 spores/g soil) was observed at Ntui in Bimodal zone, while the lowest spore density (0.26 spores/g soil) was observed at Bafang in the Western highlands. Root colonization showed that the sample from Bokito in a bimodal zone displayed the best frequency of mycorrhization (86.11%) while the sample from Bafang in the Western highlands recorded the lowest (27.11%). The PCA analysis highlighted that available phosphorus, pH and altitude all strongly correlated with AMF root colonization ability and can be used as a predictor of AMF colonization ability in cacao rhizosphere.
文摘Background,aim,and scope Certain physicochemical indexes of topsoil are closely related to climatic factors including temperature,and precipitation.Understanding the relationship between modern topsoil properties and climatic factors is essential for quantitative paleoclimate reconstruction.Motuo located in the eastern Himalayas,exhibits a significant elevation gradient of over 7000 m from Nnamjagbarwa Peak(7782 m a.s.l.)to the Baxika(150 m a.s.l.).This region features a complete vertical zonation of vegetation,from alpine meadow to tropical forest,presenting an ideal place to investigate the relationships among vegetation,soil and climate conditions across altitudinal gradients.This study aims to explore the vertical variations in the physicochemical composition of topsoil and its relationship with temperature and precipitation.Materials and methods Twenty-seven topsoil samples were collected at 100 m intervals from 800 m to 3600 m a.s.l.along the southern slope of the Himalayas.Grain size,magnetic susceptibility and geochemical elements were measured to discuss the vertical variation characteristics of topsoil composition and their correlation with climatic factors.Results(1)The grain size of topsoil at different altitudes in Motuo is mainly composed of sand accounting for an averaged 53.2%,followed by silt and clay.(2)In the mixed forest zone,frequency dependent magnetic susceptibility(χfd%)shows a clear relationship with altitude,and clay is positively correlated with both altitude and climatic factors.(3)The oxides of topsoil in this area mainly consist of SiO_(2),Al_(2)O_(3)and Fe_(2)O_(3),followed by MgO,CaO,Na_(2)O and K_(2)O,with slight variations in the primary components at different altitudes.The sensitivity of elements to climate varies across different altitudes and vegetation zone,likely due to the region’s complex topography and vegetation.(4)Physical and biological weathering dominates in the broad-leaved forest zone of Motuo,while chemical weathering is more prominent in the coniferous forest
文摘In this article, 1650 herbarium specimens of representatives of the genus Gagea Salisb. were used as research material from the collections of the National Herbarium of Uzbekistan (TASH). It presents a geographical coordinate system, habitats, phenology, and economic values. The distribution of species in Uzbekistan was indicated by the phytogeographic regions of the country. The herbarium material of Gagea Salisb. has been studied in TASH, SAMSU and MSU. The TASH Herbarium presents samples from 1914 to 2019. The review was written using information published between 1988 and 2019 from a number of reliable sources, including Science Direct, Springer, PubMed, EMBASE and Wikipedia.
基金supported by the National Natural Science Foundation of China (No.61573059)
文摘The navigation problem of the lifting reentry vehicles has attracted much research interest in the past decade. This paper researches the navigation in the blackout zone during the reentry phase of the aircraft, when the communication signals are attenuated and even interrupted by the blackout zone. However, when calculating altitude, a pure classic inertial navigation algorithm appears imprecise and divergent. In order to obtain a more precise aircraft altitude, this paper applies an integrated navigation method based on inertial navigation algorithms, which uses drag derived altitude to aid the inertial navigation during the blackout zone. This method can overcome the shortcomings of the inertial navigation system and improve the navigation accuracy. To further improve the navigation accuracy, the applicable condition and the main error factors, such as the atmospheric coefficient error and drag coefficient error are analyzed in detail. Then the damping circuit design of the navigation control system and the damping coefficients determination is introduced. The feasibility of the method is verified by the typical reentry trajectory simulation, and the influence of the iterative times on the accuracy is analyzed. Simulation results show that iterative three times achieves the best effect.