The effects of Sr,Mg,Cr,Sr/Mg and Sr/Cr combined additions on the Fe-containing intermetallic phase in a recycled Al-Si-Fe cast alloy are investigated.The experimental results show that the additions of Cr and Sr/Cr s...The effects of Sr,Mg,Cr,Sr/Mg and Sr/Cr combined additions on the Fe-containing intermetallic phase in a recycled Al-Si-Fe cast alloy are investigated.The experimental results show that the additions of Cr and Sr/Cr successfully modified the platelet and flake-likeβ-Al-5FeSi phases (β-compound) into the fibrousα-Al-8Fe-2Si (α-compound).The additions of Sr and Sr/Mg were less effective to modify theβ-compound into theα-compound,while the eutectic Si was fully modified into the fibrous morphology.A small secondary dendrite arm spacing (DAS) was found in the Sr-added,Cr-added and Sr/Cr-added alloys,especially in a steel mold.The Sr,Sr/Cr and Sr/Mg combined additions modify the eutectic Si simultaneously.A sludge phase was found in the addition of Cr-added,Sr/Cr-added and Mg-added alloys,especially in the graphite mold casting.The volume fraction ofβ-compounds was decreased by the addition of various modifying elements. The Cr and Sr/Cr combined additions are very effective to modify theβ-compound for the recycled Al-Si-Fe based alloys.展开更多
Al-20Si-5Fe melt was rapidly solidified into particles and ribbons and then consolidated to near full density by hot pressing at 400℃/250 MPa/1 h. According to the eutectic-growth and dendritic-growth velocity models...Al-20Si-5Fe melt was rapidly solidified into particles and ribbons and then consolidated to near full density by hot pressing at 400℃/250 MPa/1 h. According to the eutectic-growth and dendritic-growth velocity models, the solidification front velocity and the amount of undercooling were estimated for the particles with different sizes. Values of 0.43-1.2 cm/s and 15-28 K were obtained. The secondary dendrite arm spacing revealed a cooling rate of 6 × 10^5 K/s for the particles with an average size of 20 μm. Solidification models for the ribbons yielded a cooling rate of 5 × 10^7 K/s. As a result of the higher cooling rate, the melt-spun ribbons exhibited considerable microstructural refinement and modification. The size of the primary silicon decreased from approximately 1μm to 30 nm while the formation of iron-containing intermetallic compounds was suppressed. Supersaturation of the aluminum matrix in an amount of-7 at.% Si was noticed from the XRD patterns During the hot consolidation process, coarsening of the primary silicon particles and precipitation of β-Al5FeSi phase were observed. Evaluation of the compressive strength and hardness of the alloy indicated an improvement in mechanical properties due to the microstructural modification.展开更多
文摘The effects of Sr,Mg,Cr,Sr/Mg and Sr/Cr combined additions on the Fe-containing intermetallic phase in a recycled Al-Si-Fe cast alloy are investigated.The experimental results show that the additions of Cr and Sr/Cr successfully modified the platelet and flake-likeβ-Al-5FeSi phases (β-compound) into the fibrousα-Al-8Fe-2Si (α-compound).The additions of Sr and Sr/Mg were less effective to modify theβ-compound into theα-compound,while the eutectic Si was fully modified into the fibrous morphology.A small secondary dendrite arm spacing (DAS) was found in the Sr-added,Cr-added and Sr/Cr-added alloys,especially in a steel mold.The Sr,Sr/Cr and Sr/Mg combined additions modify the eutectic Si simultaneously.A sludge phase was found in the addition of Cr-added,Sr/Cr-added and Mg-added alloys,especially in the graphite mold casting.The volume fraction ofβ-compounds was decreased by the addition of various modifying elements. The Cr and Sr/Cr combined additions are very effective to modify theβ-compound for the recycled Al-Si-Fe based alloys.
基金The authors wish to sincerely acknowledge the High Technology Industries Center, Iranian Ministry of Mines and Metals for financial support of the research work.
文摘Al-20Si-5Fe melt was rapidly solidified into particles and ribbons and then consolidated to near full density by hot pressing at 400℃/250 MPa/1 h. According to the eutectic-growth and dendritic-growth velocity models, the solidification front velocity and the amount of undercooling were estimated for the particles with different sizes. Values of 0.43-1.2 cm/s and 15-28 K were obtained. The secondary dendrite arm spacing revealed a cooling rate of 6 × 10^5 K/s for the particles with an average size of 20 μm. Solidification models for the ribbons yielded a cooling rate of 5 × 10^7 K/s. As a result of the higher cooling rate, the melt-spun ribbons exhibited considerable microstructural refinement and modification. The size of the primary silicon decreased from approximately 1μm to 30 nm while the formation of iron-containing intermetallic compounds was suppressed. Supersaturation of the aluminum matrix in an amount of-7 at.% Si was noticed from the XRD patterns During the hot consolidation process, coarsening of the primary silicon particles and precipitation of β-Al5FeSi phase were observed. Evaluation of the compressive strength and hardness of the alloy indicated an improvement in mechanical properties due to the microstructural modification.