Noise is one of the key issues in the operation of high-speed railways, with sound source localisation and its transfer path as the two major aspects. This study investigates both the exterior and interior sound sourc...Noise is one of the key issues in the operation of high-speed railways, with sound source localisation and its transfer path as the two major aspects. This study investigates both the exterior and interior sound source distribution of a high-speed train and presents a method for performing the contribution analysis of airborne sound with regard to the interior noise. First, both exterior and interior sound source locations of the high-speed train are identified through in-situ measurements. Second, the sound source contribution for di erent regions of the train and the relationships between the exterior and interior noises are analysed. Third, a method for conducting the contribution analysis of airborne sound with regard to the interior noise of the high-speed train is described. Lastly, a case study on the sidewall area is carried out, and the contribution of airborne sound to the interior noise of this area is obtained. The results show that, when the high-speed train runs at 310 km/h, dominant exterior sound sources are located in the bogie and pantograph regions, while main interior sound sources are located at the sidewall and roof. The interior noise, the bogie area noise and the sound source at the middle of the coach exhibit very similar rates of increase with increasing train speed. For the selected sidewall area, structure-borne sound dominates in most of the 1/3 octave bands.展开更多
Light frame walls(LFWs) serve as common partition walls in prefabricated buildings due to their lightweight nature, costeffectiveness, energy efficiency, and adaptability for rapid on-site assembly. However, their aco...Light frame walls(LFWs) serve as common partition walls in prefabricated buildings due to their lightweight nature, costeffectiveness, energy efficiency, and adaptability for rapid on-site assembly. However, their acoustic insulation capability is hindered by issues such as sound bridges, resonance, and coincidence dips, resulting in inadequate sound insulation. This study aims to propose LFW designs with superior acoustic insulation suitable for practical engineering while meeting prevailing national standards. Nine full-scale LFW configurations were subjected to laboratory testing to evaluate the impact of staggered stud arrangements, stud types, and incorporation of compounded materials. The tests were performed between 100 and 5000 Hz,and the sound pressure level and reverberation time at 1/3 octave band were measured and used to calculate the weighted sound insulation index(Rw). Results demonstrated that the outlined design modifications significantly enhanced the sound insulation of the LFW. These modifications effectively mitigate the influence of sound bridges while addressing resonance and coincidence dips inherent in the wall system. Particularly noteworthy was the superior sound insulation achieved by staggered-stud LFWs with compounded materials, surpassing that of autoclaved lightweight concrete walls commonly used in prefabricated constructions despite having lesser thickness and surface density. Rwvalues increased from 43 to 54 dB compared to conventional LFWs, translating to a notable elevation in airborne sound insulation level from 4 to 7 as an internal separation component,meeting the requisite standards for most applications.展开更多
Acoustic agglomeration technology use high-intensity acoustic field to make aerosol particles collide and condense rapidly. Existing studies have shown that 70%–90% of fine particles can be eliminated within minutes ...Acoustic agglomeration technology use high-intensity acoustic field to make aerosol particles collide and condense rapidly. Existing studies have shown that 70%–90% of fine particles can be eliminated within minutes using compression drives and air-jet generators. Currently, there are limitations to the sound sources used. In this paper, an airborne ultrasonic transducer with a resonant frequency of 15 kHz is designed, followed by the corresponding numerical simulation and experiments for the evaluation of the vibration modal and sound pressure field. The sound pressure levels (SPL) of the open space and the agglomeration chamber can reach 150 dB and 156 dB, respectively. The agglomeration effect of water droplets, liquid phase smoke, solid phase smoke and mixed smoke is experimentally investigated, and the light transmittance rapidly increases from 8% to 60% within 4 s, 8 s, 5 s and 6 s, respectively. Agglomeration is also effective in the high-frequency range, and we infer that the acoustic wake effect is the predominant mechanism. The elimination effect is promoted with the increasing of SPL until the corresponding secondary acoustic effect is enhanced. Moreover, the agglomeration rate of higher concentration aerosol is significantly better than that of diluted aerosols in ultrasonic agglomeration process.展开更多
The arrangement of natural and physical features on the earth’s surface are a few among the countless items that govern the airborne acoustic transmission at boundary layers.In particular,if the acoustic waves are at...The arrangement of natural and physical features on the earth’s surface are a few among the countless items that govern the airborne acoustic transmission at boundary layers.In particular,if the acoustic waves are attributes of live concerts at open-air theatres,without losing the sheen and quality,the audience should certainly receive the unbroken depth of the performance.Hence,at all times,it is advisable to analyse the auditory receptiveness,particularly in all intended recreational spaces.The current pandemic circumstances and the mandated COVID-19 prevention protocols encourage gatherings in naturally ventilated outdoor regions than confined indoors.This work predicts and quantifies the acoustic experience at the naturally carved amphitheatre at SAINTGITS,an autonomous institution at the down South-West of the Indian Subcontinent.The entire recreational space at SAINTGITS AMPHI was separately modelled as a Base case and Advanced case,and were analysed using the acoustic modelling module of EASE Focus,a renowned simulation freeware,which is in strict adherence with the International standards.The variation in loudness received at the nearest and farthest ends of the amphitheatre was between 67 to 80 dB.Though the Zero frequency SPL(Z-weighting)exhibited the loudness in the range of 81 to 85 dB and could maintain a safer auditory level for any human ear,it was confined to a hemispherical region near the sound source.A vertical beam angle of−4.0°was found to be effective throughout.The procedures and analyses will certainly help the future organizers and stakeholders to effectively plan the resources to reap rich acoustic experience at terrain-centric locales.The surface topography and contours were plotted with another set of freeware,the CADMAPPER and the QUIKGRID,to compare terrain gradient with the known data.Furthermore,this interdisciplinary research exhibits the extensive simulation capability of both EASE Focus and QUIKGRID and demonstrates the modelling versatility and deliverable potential of the展开更多
基金Supported by National Key R&D Program of China(Grant No.2016YFE0205200)National Natural Science Foundation of China(Grant No.U1834201)
文摘Noise is one of the key issues in the operation of high-speed railways, with sound source localisation and its transfer path as the two major aspects. This study investigates both the exterior and interior sound source distribution of a high-speed train and presents a method for performing the contribution analysis of airborne sound with regard to the interior noise. First, both exterior and interior sound source locations of the high-speed train are identified through in-situ measurements. Second, the sound source contribution for di erent regions of the train and the relationships between the exterior and interior noises are analysed. Third, a method for conducting the contribution analysis of airborne sound with regard to the interior noise of the high-speed train is described. Lastly, a case study on the sidewall area is carried out, and the contribution of airborne sound to the interior noise of this area is obtained. The results show that, when the high-speed train runs at 310 km/h, dominant exterior sound sources are located in the bogie and pantograph regions, while main interior sound sources are located at the sidewall and roof. The interior noise, the bogie area noise and the sound source at the middle of the coach exhibit very similar rates of increase with increasing train speed. For the selected sidewall area, structure-borne sound dominates in most of the 1/3 octave bands.
基金supported by Jiangsu Science and Technology Project (Grant No. BE2022790)the Special Fund for Green Building Development in Jiangsu Province (Grant No. (2021) 62-42)the Open Research Fund of Key Laboratory of Architectural Acoustic Environment of Anhui Higher Education Institutes (Grant No. AAE2021YB02)。
文摘Light frame walls(LFWs) serve as common partition walls in prefabricated buildings due to their lightweight nature, costeffectiveness, energy efficiency, and adaptability for rapid on-site assembly. However, their acoustic insulation capability is hindered by issues such as sound bridges, resonance, and coincidence dips, resulting in inadequate sound insulation. This study aims to propose LFW designs with superior acoustic insulation suitable for practical engineering while meeting prevailing national standards. Nine full-scale LFW configurations were subjected to laboratory testing to evaluate the impact of staggered stud arrangements, stud types, and incorporation of compounded materials. The tests were performed between 100 and 5000 Hz,and the sound pressure level and reverberation time at 1/3 octave band were measured and used to calculate the weighted sound insulation index(Rw). Results demonstrated that the outlined design modifications significantly enhanced the sound insulation of the LFW. These modifications effectively mitigate the influence of sound bridges while addressing resonance and coincidence dips inherent in the wall system. Particularly noteworthy was the superior sound insulation achieved by staggered-stud LFWs with compounded materials, surpassing that of autoclaved lightweight concrete walls commonly used in prefabricated constructions despite having lesser thickness and surface density. Rwvalues increased from 43 to 54 dB compared to conventional LFWs, translating to a notable elevation in airborne sound insulation level from 4 to 7 as an internal separation component,meeting the requisite standards for most applications.
基金supported by the National Natural Science Foundation of China(Grant No.52276162 and 51876197)the Fundamental Research Funds for the Provincial Universities of Zhejiang.
文摘Acoustic agglomeration technology use high-intensity acoustic field to make aerosol particles collide and condense rapidly. Existing studies have shown that 70%–90% of fine particles can be eliminated within minutes using compression drives and air-jet generators. Currently, there are limitations to the sound sources used. In this paper, an airborne ultrasonic transducer with a resonant frequency of 15 kHz is designed, followed by the corresponding numerical simulation and experiments for the evaluation of the vibration modal and sound pressure field. The sound pressure levels (SPL) of the open space and the agglomeration chamber can reach 150 dB and 156 dB, respectively. The agglomeration effect of water droplets, liquid phase smoke, solid phase smoke and mixed smoke is experimentally investigated, and the light transmittance rapidly increases from 8% to 60% within 4 s, 8 s, 5 s and 6 s, respectively. Agglomeration is also effective in the high-frequency range, and we infer that the acoustic wake effect is the predominant mechanism. The elimination effect is promoted with the increasing of SPL until the corresponding secondary acoustic effect is enhanced. Moreover, the agglomeration rate of higher concentration aerosol is significantly better than that of diluted aerosols in ultrasonic agglomeration process.
基金This research is funded and supported by the Centre for Engineering Research and Development under the Research Seed Money scheme(CERD-RSM 2018 No.ME02 KTU/Research 2/3894/2018)of APJ Abdul Kalam Technological University,Thiruvanathapuram,Kerala State,India.
文摘The arrangement of natural and physical features on the earth’s surface are a few among the countless items that govern the airborne acoustic transmission at boundary layers.In particular,if the acoustic waves are attributes of live concerts at open-air theatres,without losing the sheen and quality,the audience should certainly receive the unbroken depth of the performance.Hence,at all times,it is advisable to analyse the auditory receptiveness,particularly in all intended recreational spaces.The current pandemic circumstances and the mandated COVID-19 prevention protocols encourage gatherings in naturally ventilated outdoor regions than confined indoors.This work predicts and quantifies the acoustic experience at the naturally carved amphitheatre at SAINTGITS,an autonomous institution at the down South-West of the Indian Subcontinent.The entire recreational space at SAINTGITS AMPHI was separately modelled as a Base case and Advanced case,and were analysed using the acoustic modelling module of EASE Focus,a renowned simulation freeware,which is in strict adherence with the International standards.The variation in loudness received at the nearest and farthest ends of the amphitheatre was between 67 to 80 dB.Though the Zero frequency SPL(Z-weighting)exhibited the loudness in the range of 81 to 85 dB and could maintain a safer auditory level for any human ear,it was confined to a hemispherical region near the sound source.A vertical beam angle of−4.0°was found to be effective throughout.The procedures and analyses will certainly help the future organizers and stakeholders to effectively plan the resources to reap rich acoustic experience at terrain-centric locales.The surface topography and contours were plotted with another set of freeware,the CADMAPPER and the QUIKGRID,to compare terrain gradient with the known data.Furthermore,this interdisciplinary research exhibits the extensive simulation capability of both EASE Focus and QUIKGRID and demonstrates the modelling versatility and deliverable potential of the