相比于传统的PI控制,模型预测控制(model predictive control,MPC)具有动态响应快、避免调整控制参数,以及可增加系统约束等优点,因此被广泛应用到电力电子控制领域。然而,系统模型参数的不匹配通常会导致控制系统产生稳态误差,对于Bo...相比于传统的PI控制,模型预测控制(model predictive control,MPC)具有动态响应快、避免调整控制参数,以及可增加系统约束等优点,因此被广泛应用到电力电子控制领域。然而,系统模型参数的不匹配通常会导致控制系统产生稳态误差,对于Boost变换器电流控制尤为严重。因此,该文针对Boost变换器提出一种简单有效的模型预测控制方法,可解决因未知的电感电阻和输入电压引起的模型不匹配问题,并且只需一步预测即可实现控制目标。另外,所提出的方法是属于连续控制集模型预测控制(continuouscontrol set model predictive control,CCS-MPC),使用固定的开关频率。仿真和实验结果证明了所提出方法的有效性。展开更多
In this study, a new lumped-mass-stick model (LMSM) is developed based on the modal characteristics of a structure such as eigenvalues and eigenvectors. The simplified model, named the "frequency adaptive lumped-ma...In this study, a new lumped-mass-stick model (LMSM) is developed based on the modal characteristics of a structure such as eigenvalues and eigenvectors. The simplified model, named the "frequency adaptive lumped-massstick model," hasonly a small number of stick elements and nodes to provide the same natural frequencies of the structure and is applied to a nuclear containment building. To investigate the numerical performance of the LMSM, a time history analysis is carried out on both the LMSM and the finite element model (FEM) for a nuclear containment building. A comparison of the results shows that the dynamic responses of the LMSM in terms of displacement and acceleration are almost identical to those of the FEM. In addition, the results in terms of floor response spectra at certain elevations are also in good agreement.展开更多
文摘相比于传统的PI控制,模型预测控制(model predictive control,MPC)具有动态响应快、避免调整控制参数,以及可增加系统约束等优点,因此被广泛应用到电力电子控制领域。然而,系统模型参数的不匹配通常会导致控制系统产生稳态误差,对于Boost变换器电流控制尤为严重。因此,该文针对Boost变换器提出一种简单有效的模型预测控制方法,可解决因未知的电感电阻和输入电压引起的模型不匹配问题,并且只需一步预测即可实现控制目标。另外,所提出的方法是属于连续控制集模型预测控制(continuouscontrol set model predictive control,CCS-MPC),使用固定的开关频率。仿真和实验结果证明了所提出方法的有效性。
基金Energy Efficiency & Resources of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), Ministry of Knowledge Economy, Republic of Korea under Grant No. 2010T100101066
文摘In this study, a new lumped-mass-stick model (LMSM) is developed based on the modal characteristics of a structure such as eigenvalues and eigenvectors. The simplified model, named the "frequency adaptive lumped-massstick model," hasonly a small number of stick elements and nodes to provide the same natural frequencies of the structure and is applied to a nuclear containment building. To investigate the numerical performance of the LMSM, a time history analysis is carried out on both the LMSM and the finite element model (FEM) for a nuclear containment building. A comparison of the results shows that the dynamic responses of the LMSM in terms of displacement and acceleration are almost identical to those of the FEM. In addition, the results in terms of floor response spectra at certain elevations are also in good agreement.