Adaptive wings have long used smooth morphing technique of compliant leading and trailing edge to improve their aerodynamic characteristics. This paper introduces a systematic approach to design compliant structures t...Adaptive wings have long used smooth morphing technique of compliant leading and trailing edge to improve their aerodynamic characteristics. This paper introduces a systematic approach to design compliant structures to carry out required shape changes under distributed pressure loads. In order to minimize the deviation of the deformed shape from the target shape, this method uses MATLAB and ANSYS to optimize the distributed compliant mechanisms by way of the ground approach and genetic algorithm (GA) to remove the elements possessive of very low stresses. In the optimization process, many factors should be considered such as airloads, input displacements, and geometric nonlinearities. Direct search method is used to locally optimize the dimension and input displacement after the GA optimization. The resultant structure could make its shape change from 0 to 9.3 degrees. The experimental data of the model confirms the feasibility of this approach.展开更多
In this paper, adaptive genetic algorithm (AGA) is applied to topology optimization of truss structure with frequency domain excitations. The optimization constraints include fundamental frequency, displacement resp...In this paper, adaptive genetic algorithm (AGA) is applied to topology optimization of truss structure with frequency domain excitations. The optimization constraints include fundamental frequency, displacement responses under force excitations and acceleration responses under foundation acceleration excitations. The roulette wheel selection operator, adaptive crossover and mutation operators are used as genetic operators. Some heuristic strategies are put forward to direct the deletion of the extra bars and nodes on truss structures. Three examples demonstrate that the proposed method can yield the optimum structure form and the lightest weight of the given ground structure while satisfying dynamic response constraints.展开更多
For the purpose of achieving high-resolution optimal solutions this paper proposes a nodal design variablebased adaptive method for topology optimization of continuum structures. The analysis mesh-independent density ...For the purpose of achieving high-resolution optimal solutions this paper proposes a nodal design variablebased adaptive method for topology optimization of continuum structures. The analysis mesh-independent density field, interpolated by the nodal design variables at a given set of density points, is adaptively refined/coarsened accord- ing to a criterion regarding the gray-scale measure of local regions. New density points are added into the gray regions and redundant ones are removed from the regions occupied by purely solid/void phases for decreasing the number of de- sign variables. A penalization factor adaptivity technique is employed-to prevent premature convergence of the optimiza- tion iterations. Such an adaptive scheme not only improves the structural boundary description quality, but also allows for sufficient further topological evolution of the structural layout in higher adaptivity levels and thus essentially enables high-resolution solutions. Moreover, compared with the case with uniformly and finely distributed density points, the proposed adaptive method can achieve a higher numerical efficiency of the optimization process.展开更多
现有自适应成长技术根据数学规划理论中的库恩塔克条件推导迭代公式,对以应变能为目标,体积为约束的板壳结构加强筋分布优化问题,设计效率高且结果好。但对不同类型的优化问题需要重新推导迭代公式,通用性差,且难以推广到多约束问题。...现有自适应成长技术根据数学规划理论中的库恩塔克条件推导迭代公式,对以应变能为目标,体积为约束的板壳结构加强筋分布优化问题,设计效率高且结果好。但对不同类型的优化问题需要重新推导迭代公式,通用性差,且难以推广到多约束问题。针对现有技术的不足,采用移动渐近线算法(The method of moving asymptotes,MMA)迭代更新设计变量,将自适应成长技术推广应用于桁架结构拓扑优化设计中。讨论了单约束和多约束的典型桁架结构设计问题,并对多载荷工况进行了研究。算例结果表明,所提方法可以得到清晰的杆件分布和具体尺寸信息,设计效率高,适用性好,便于实际工程加工,具有较好的应用前景。展开更多
基金National Natural Science Foundation of China (50675175)
文摘Adaptive wings have long used smooth morphing technique of compliant leading and trailing edge to improve their aerodynamic characteristics. This paper introduces a systematic approach to design compliant structures to carry out required shape changes under distributed pressure loads. In order to minimize the deviation of the deformed shape from the target shape, this method uses MATLAB and ANSYS to optimize the distributed compliant mechanisms by way of the ground approach and genetic algorithm (GA) to remove the elements possessive of very low stresses. In the optimization process, many factors should be considered such as airloads, input displacements, and geometric nonlinearities. Direct search method is used to locally optimize the dimension and input displacement after the GA optimization. The resultant structure could make its shape change from 0 to 9.3 degrees. The experimental data of the model confirms the feasibility of this approach.
基金Project supported by the Innovation Fund of Space Technology.
文摘In this paper, adaptive genetic algorithm (AGA) is applied to topology optimization of truss structure with frequency domain excitations. The optimization constraints include fundamental frequency, displacement responses under force excitations and acceleration responses under foundation acceleration excitations. The roulette wheel selection operator, adaptive crossover and mutation operators are used as genetic operators. Some heuristic strategies are put forward to direct the deletion of the extra bars and nodes on truss structures. Three examples demonstrate that the proposed method can yield the optimum structure form and the lightest weight of the given ground structure while satisfying dynamic response constraints.
基金supported by the Key Project of Chinese National Programs for Fundamental Research and Development(2010CB832703)the National Natural Science Foundation of China(11072047 and 91130025)
文摘For the purpose of achieving high-resolution optimal solutions this paper proposes a nodal design variablebased adaptive method for topology optimization of continuum structures. The analysis mesh-independent density field, interpolated by the nodal design variables at a given set of density points, is adaptively refined/coarsened accord- ing to a criterion regarding the gray-scale measure of local regions. New density points are added into the gray regions and redundant ones are removed from the regions occupied by purely solid/void phases for decreasing the number of de- sign variables. A penalization factor adaptivity technique is employed-to prevent premature convergence of the optimiza- tion iterations. Such an adaptive scheme not only improves the structural boundary description quality, but also allows for sufficient further topological evolution of the structural layout in higher adaptivity levels and thus essentially enables high-resolution solutions. Moreover, compared with the case with uniformly and finely distributed density points, the proposed adaptive method can achieve a higher numerical efficiency of the optimization process.
文摘现有自适应成长技术根据数学规划理论中的库恩塔克条件推导迭代公式,对以应变能为目标,体积为约束的板壳结构加强筋分布优化问题,设计效率高且结果好。但对不同类型的优化问题需要重新推导迭代公式,通用性差,且难以推广到多约束问题。针对现有技术的不足,采用移动渐近线算法(The method of moving asymptotes,MMA)迭代更新设计变量,将自适应成长技术推广应用于桁架结构拓扑优化设计中。讨论了单约束和多约束的典型桁架结构设计问题,并对多载荷工况进行了研究。算例结果表明,所提方法可以得到清晰的杆件分布和具体尺寸信息,设计效率高,适用性好,便于实际工程加工,具有较好的应用前景。