摘要
由于双向渐进结构优化法(BESO)拓扑优化中,进化率值常采用恒定值形式,这会导致在迭代初期计算缓慢,后期又会快速更新单元结构,很难保证迭代计算效率。本文分别基于两类函数构建两种自适应进化率机制,以动态控制进化率值,提高拓扑优化的计算效率。算例测试结果表明,所提出的自适应进化率模型相对于恒定值型提升了40%的计算效率。
In BESO method,the evolution rate value often adopts a constant value,leading to slow calculation in the early iteration period and rapid updating of elements in the later period,which is difficult to ensure the efficiency of iterative calculation.In this paper,two adaptive evolutionary rate mechanisms are constructed based on Two-class functions respectively to dynamically control evolutionary rate value and improve the computational efficiency of topology optimization.The test results of a numerical example show that the proposed adaptive evolution rate model improves the computational efficiency by 40% compared to the constant value type.
作者
巫小燕
刘永明
赵转哲
芮羽健
涂志健
陈玉
刘志博
WU Xiaoyan;LIU Yongming;ZHAO Zhuanzhe;RUI Yujian;TU Zhijian;CHEN Yu;LIU Zhibo(School of Mechanical and Automotive Engineering,Anhui Polytechnic University,Wuhu 241000,China;School of Artificial Intelligence,Anhui Polytechnic University,Wuhu 241000,China;Intelligent Equipment Quality and Reliability Key Laboratory of Anhui Province,Wuhu 241000,China;Scientific Research Department,Wuhu Ceprei Robot Technology Research Co.,Ltd.,Wuhu 241100,China)
出处
《安徽工程大学学报》
CAS
2024年第3期51-56,共6页
Journal of Anhui Polytechnic University
基金
安徽省智能矿山技术与装备工程实验室开放基金资助项目(AIMTEEL202201)
安徽省教育厅科学研究重点项目(2022AH050995,2022AH050975)
安徽工程大学校级科研项目(KZ42022068)
安徽工程大学科研启动基金项目(S022022067)
芜湖市应用基础研究项目(2022jc20)。