The family of flaviviruses is one of the most medically important groups of emerging arthropod-borne viruses. Host cell cytoskeletons have been reported to have close contact with flaviviruses during virus entry, intr...The family of flaviviruses is one of the most medically important groups of emerging arthropod-borne viruses. Host cell cytoskeletons have been reported to have close contact with flaviviruses during virus entry, intracellular transport, replication, and egress process, although many detailed mechanisms are still unclear. This article provides a brief overview of the function of the most prominent flaviviruses-induced or-hijacked cytoskeletal structures including actin, microtubules and intermediate filaments, mainly focus on infection by dengue virus, Zika virus and West Nile virus. We suggest that virus interaction with host cytoskeleton to be an interesting area of future research.展开更多
The pollen tube is fundamental for the reproduction of seed plants. Characteristically, it grows relatively quickly and uni-directionally ("polarized growth") to extend the male gametophyte to reach the female gam...The pollen tube is fundamental for the reproduction of seed plants. Characteristically, it grows relatively quickly and uni-directionally ("polarized growth") to extend the male gametophyte to reach the female gametophyte. The pollen tube forms a channel through which the sperm cells move so that they can reach their targets in the ovule. To grow quickly and directionally, the pollen tube requires an intense movement of organelles and vesicles that allows the cell's contents to be distributed to sustain the growth rate. While the various organelles distribute more or less uniformly within the pollen tube, Golgi-released secretory vesicles accumulate massively at the pollen tube apex, that is, the growing region. This intense movement of organelles and vesicles is dependent on the dynamics of the cytoskeleton, which reorganizes differentially in response to external signals and coordinates membrane trafficking with the growth rate of pollen tubes.展开更多
Formin是一种保守的肌动蛋白成核因子,其中只有少数Formin没有肌动蛋白成核能力。Formin家族包括DAAM(dishevelled-associated activator of morphogenesis)和INF(inverted formin)等成员。DAAM1表达上调会导致机体功能紊乱,进而导致特...Formin是一种保守的肌动蛋白成核因子,其中只有少数Formin没有肌动蛋白成核能力。Formin家族包括DAAM(dishevelled-associated activator of morphogenesis)和INF(inverted formin)等成员。DAAM1表达上调会导致机体功能紊乱,进而导致特发性肺动脉高压、卵巢癌、乳腺癌、胃癌的发生。DAAM2在机体内功能失调会导致髓鞘结构异常、类固醇耐药性肾病综合征、肾细胞癌、胰腺癌等疾病的发生。INF2表达上调可以诱导线粒体的分裂,促进细胞的增殖迁移,促进局灶节段性肾小球硬化、子宫内膜癌、甲状腺癌等疾病的发展。Formin的功能与人类疾病的发生和发展密切相关。本文综述了近年来Formin的研究进展及其与人类疾病之间的联系,为Formin相关疾病的深入研究和治疗提供参考和依据。展开更多
Maize pollen actin has been labeled with Oregon Green 488 iodoacetamide. A yield of 3 mg fluorescent actin analogue has been obtained from 10 mg of maize pollen actin, which is 99% in purity and the dye/protein ratio ...Maize pollen actin has been labeled with Oregon Green 488 iodoacetamide. A yield of 3 mg fluorescent actin analogue has been obtained from 10 mg of maize pollen actin, which is 99% in purity and the dye/protein ratio is 72%. In the presence of Mg2+ and K+, the fluorescent actin analogue polymerized into filaments in vitro. Green fluorescent filaments were observed when the fluorescent actin was introduced into living plant cells by microinjection, indicating that the fluorescent actin analogue functions similarly to the native actin.展开更多
Profilin is an actin-binding protein that shows complex effects on the dynamics of the actin cytoskeleton. There are five profilin isoforms in Arabidopsis thaliana L. However, it is still an open question whether thes...Profilin is an actin-binding protein that shows complex effects on the dynamics of the actin cytoskeleton. There are five profilin isoforms in Arabidopsis thaliana L. However, it is still an open question whether these isoforms are functionally different. In the present study, two profilin isoforms from Arabidopsis, PRF1 and PRF2 were fused with green fuorescent protein (GFP) tag and expressed in Escherichia coil and A. thaliana in order to compare their biochemical properties in vitro and their cellular distributions in vivo. Biochemical analysis revealed that fusion proteins of GFP-PRF1 and GFP-PRF2 can bind to poly-L-proline and G-actin showing remarkable differences. GFP-PRF1 has much higher affinities for both poly-L-proline and G-actin compared with GFP-PRF2. Observations of living cells in stable transgenic A. thaliana lines revealed that 35S::GFP-PRF1 formed a filamentous network, while 35S::GFP-PRF2 formed polygonal meshes. Results from the treatment with latrunculin A and a subsequent recovery experiment indicated that filamentous alignment of GFP-PRF1 was likely associated with actin filaments. However, GFP-PRF2 localized to polygonal meshes resembling the endoplasmic reticulum. Our results provide evidence that Arabidopsis profllin isoforms PRF1 and PRF2 have different biochemical affinities for poly-L-proline and G-actin, and show distinctive Iocalizations in living cells. These data suggest that PRF1 and PRF2 are functionally different isoforms.展开更多
Vacuoles are suggested to play crucial roles in plant defense-related cell death. During programmed cell death, previous live cell imaging studies have observed vacuoles to become simpler in structure and have implica...Vacuoles are suggested to play crucial roles in plant defense-related cell death. During programmed cell death, previous live cell imaging studies have observed vacuoles to become simpler in structure and have implicated this simplification as a prelude to the vacuole's rupture and consequent lysis of the plasma membrane. Here, we examined dynamics of the vacuole in cell cycle-synchronized tobacco BY-2 (Nicotiana tabacum L. cv. Bright Yellow 2) cells during ceil death induced by application of culture filtrates of Erwinia carotovora. The filtrate induced death in about 90% of the cells by 24 h. Prior to cell death, vacuole shape simplified and endoplasmic actin filaments disassembled; however, the vacuoles did not rupture until after plasma membrane integrity was lost. Instead of facilitating rupture, the simplification of vacuole structure might play a role in the retrieval of membrane components needed for defense-related cell death.展开更多
In plants, light determines chloroplast position; these organelles show avoidance and accumulation re- sponses in high and low fluence-rate light, respectively. Chloroplast motility in response to light is driven by c...In plants, light determines chloroplast position; these organelles show avoidance and accumulation re- sponses in high and low fluence-rate light, respectively. Chloroplast motility in response to light is driven by cytoskeletal elements. The actin cytoskeleton mediates chloroplast photorelocation responses in Arabidopsis thali- ana. In contrast, in the moss Physcomitrella patens, both, actin filaments and microtubules can transport chloroplasts. Because of the surprising evidence that two kinesin-like proteins (called KACs) are important for actin-dependent chloroplast photorelocation in vascular plants, we wanted to determine the cytoskeletal system responsible for the function of these proteins in moss. We performed gene- specific silencing using RNA interference in P. patens. We confirmed existing reports using gene knockouts, that PpKAC1 and PpKAC2 are required for chloroplast dispersion under uniform white light conditions, and that the two proteins are functionally equivalent. To address the specificcytoskeletal elements responsible for motility, this loss-of- function approach was combined with cytoskeleton-targeted drug studies. We found that, in P. patens, these KACs mediate the chloroplast light-avoidance response in an actin filament- dependent, rather than a microtubule-dependent manner. Using correlation-decay analysis of cytoskeletal dynamics, we found that PpKAC stabilizes cortical actin filaments, but has no effect on microtubule dynamics.展开更多
Breast cancer resistance protein (Bcrp) is an ATP-dependent efflux drug transporter. It has a diverse spectrum of hydrophilic and hydrophobic substrates ranging from anticancer, antiviral and antihypertensive drugs,...Breast cancer resistance protein (Bcrp) is an ATP-dependent efflux drug transporter. It has a diverse spectrum of hydrophilic and hydrophobic substrates ranging from anticancer, antiviral and antihypertensive drugs, to organic anions, antibiotics, phytoestrogens (e.g., genistein, daidzein, coumestrol), xenoestrogens and steroids (e.g., dehydroepiandrosterone sulfate). Bcrp is an integral membrane protein in cancer and normal cells within multiple organs (e.g., brain, placenta, intestine and testis) that maintains cellular homeostasis by extruding drugs and harmful substances from the inside of cells. In the brain, Bcrp is a major component of the blood- brain barrier located on endothelial cells near tight junctions (TJs). However, Bcrp is absent at the Sertoli cell blood-testis barrier (BTB); instead, it is localized almost exclusively to the endothelial TJ in microvessels in the interstitium and the peritubular myoid cells in the tunica propria. Recent studies have shown that Bcrp is also expressed stage specifically and spatiotemporally by Sertoli and germ cells in the seminiferous epithelium of rat testes, limited only to a testis-specific cell adhesion ultrastructure known as the apical ectoplasmic specialisation (ES) in stage VI-early VIII tubules. These findings suggest that Bcrp is equipped by late spermatids and Sertoli cells to protect late-stage spermatids completing spermiogenesis. Furthermore, Bcrp was found to be associated with F (filamentous)-actin and several actin regulatory proteins at the apical ES and might be involved in the organisation of actin filaments at the apical ES in stage VII-VIII tubules. These findings will be carefully evaluated in this brief review.展开更多
Background: Malassezia pachydermatis is the main causative agent of canine otitis and also of a myriad of dermatological problems in companion animals;its interaction mechanisms with host cells are still unclear. Obje...Background: Malassezia pachydermatis is the main causative agent of canine otitis and also of a myriad of dermatological problems in companion animals;its interaction mechanisms with host cells are still unclear. Objectives: To establish an in vitro infection model of M. pachydermatis-exposed RK13 cells in order to evaluate cell morphological changes as well as changes in the structure of actin filaments. Methods: Cultures of RK13 cells were infected with M. pachydermatis, alterations caused by the yeast were evaluated by optical and fluorescence microscopy. Results: M. pachydermatis adheres itself to the cell and produces the formation of multiple agglomerates that cause changes in cell morphology, formation of cell aggregates in overlays, presence of syncytia and destruction of cell culture structure. The damaged cells presented changes in the actin filaments consisting of thickening of the cell cortex and loss of stress fibers. On the other hand, the formation of perinuclear actin rings in the yeasts was observed. Conclusions: An in vitro infection model was established with M. pachydermatis and alterations in cell morphology were observed consisting of changes in the structure of the actin filaments, overgrowth of the cells and the presence of syncytia.展开更多
基金supported by Collaborative Research Grant (KLMVI-OP-201904) of CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciencesthe starting Grant of Institut Pasteur of Shanghai (1185170000), Chinese Academy of Sciences
文摘The family of flaviviruses is one of the most medically important groups of emerging arthropod-borne viruses. Host cell cytoskeletons have been reported to have close contact with flaviviruses during virus entry, intracellular transport, replication, and egress process, although many detailed mechanisms are still unclear. This article provides a brief overview of the function of the most prominent flaviviruses-induced or-hijacked cytoskeletal structures including actin, microtubules and intermediate filaments, mainly focus on infection by dengue virus, Zika virus and West Nile virus. We suggest that virus interaction with host cytoskeleton to be an interesting area of future research.
文摘The pollen tube is fundamental for the reproduction of seed plants. Characteristically, it grows relatively quickly and uni-directionally ("polarized growth") to extend the male gametophyte to reach the female gametophyte. The pollen tube forms a channel through which the sperm cells move so that they can reach their targets in the ovule. To grow quickly and directionally, the pollen tube requires an intense movement of organelles and vesicles that allows the cell's contents to be distributed to sustain the growth rate. While the various organelles distribute more or less uniformly within the pollen tube, Golgi-released secretory vesicles accumulate massively at the pollen tube apex, that is, the growing region. This intense movement of organelles and vesicles is dependent on the dynamics of the cytoskeleton, which reorganizes differentially in response to external signals and coordinates membrane trafficking with the growth rate of pollen tubes.
文摘Formin是一种保守的肌动蛋白成核因子,其中只有少数Formin没有肌动蛋白成核能力。Formin家族包括DAAM(dishevelled-associated activator of morphogenesis)和INF(inverted formin)等成员。DAAM1表达上调会导致机体功能紊乱,进而导致特发性肺动脉高压、卵巢癌、乳腺癌、胃癌的发生。DAAM2在机体内功能失调会导致髓鞘结构异常、类固醇耐药性肾病综合征、肾细胞癌、胰腺癌等疾病的发生。INF2表达上调可以诱导线粒体的分裂,促进细胞的增殖迁移,促进局灶节段性肾小球硬化、子宫内膜癌、甲状腺癌等疾病的发展。Formin的功能与人类疾病的发生和发展密切相关。本文综述了近年来Formin的研究进展及其与人类疾病之间的联系,为Formin相关疾病的深入研究和治疗提供参考和依据。
文摘Maize pollen actin has been labeled with Oregon Green 488 iodoacetamide. A yield of 3 mg fluorescent actin analogue has been obtained from 10 mg of maize pollen actin, which is 99% in purity and the dye/protein ratio is 72%. In the presence of Mg2+ and K+, the fluorescent actin analogue polymerized into filaments in vitro. Green fluorescent filaments were observed when the fluorescent actin was introduced into living plant cells by microinjection, indicating that the fluorescent actin analogue functions similarly to the native actin.
基金Supported by the State Key Basic Research and Development Plan of China (2006CB100101 and 2007CB108700)the National Natural Science Foundation of China (30421002,30370707,30570925 and 30630005)a Grant from Deutsche Forschungsgemeinschaft (DFG,SA 1564/2-1)
文摘Profilin is an actin-binding protein that shows complex effects on the dynamics of the actin cytoskeleton. There are five profilin isoforms in Arabidopsis thaliana L. However, it is still an open question whether these isoforms are functionally different. In the present study, two profilin isoforms from Arabidopsis, PRF1 and PRF2 were fused with green fuorescent protein (GFP) tag and expressed in Escherichia coil and A. thaliana in order to compare their biochemical properties in vitro and their cellular distributions in vivo. Biochemical analysis revealed that fusion proteins of GFP-PRF1 and GFP-PRF2 can bind to poly-L-proline and G-actin showing remarkable differences. GFP-PRF1 has much higher affinities for both poly-L-proline and G-actin compared with GFP-PRF2. Observations of living cells in stable transgenic A. thaliana lines revealed that 35S::GFP-PRF1 formed a filamentous network, while 35S::GFP-PRF2 formed polygonal meshes. Results from the treatment with latrunculin A and a subsequent recovery experiment indicated that filamentous alignment of GFP-PRF1 was likely associated with actin filaments. However, GFP-PRF2 localized to polygonal meshes resembling the endoplasmic reticulum. Our results provide evidence that Arabidopsis profllin isoforms PRF1 and PRF2 have different biochemical affinities for poly-L-proline and G-actin, and show distinctive Iocalizations in living cells. These data suggest that PRF1 and PRF2 are functionally different isoforms.
基金supported by JSPS KAKENHI Grant Numbers 25711017 (T.H.), 25291056 (S.H.) and 24114007 (S.H.)
文摘Vacuoles are suggested to play crucial roles in plant defense-related cell death. During programmed cell death, previous live cell imaging studies have observed vacuoles to become simpler in structure and have implicated this simplification as a prelude to the vacuole's rupture and consequent lysis of the plasma membrane. Here, we examined dynamics of the vacuole in cell cycle-synchronized tobacco BY-2 (Nicotiana tabacum L. cv. Bright Yellow 2) cells during ceil death induced by application of culture filtrates of Erwinia carotovora. The filtrate induced death in about 90% of the cells by 24 h. Prior to cell death, vacuole shape simplified and endoplasmic actin filaments disassembled; however, the vacuoles did not rupture until after plasma membrane integrity was lost. Instead of facilitating rupture, the simplification of vacuole structure might play a role in the retrieval of membrane components needed for defense-related cell death.
基金supported by WPI startup funds to LV and ETthe Eppley Foundation for Research
文摘In plants, light determines chloroplast position; these organelles show avoidance and accumulation re- sponses in high and low fluence-rate light, respectively. Chloroplast motility in response to light is driven by cytoskeletal elements. The actin cytoskeleton mediates chloroplast photorelocation responses in Arabidopsis thali- ana. In contrast, in the moss Physcomitrella patens, both, actin filaments and microtubules can transport chloroplasts. Because of the surprising evidence that two kinesin-like proteins (called KACs) are important for actin-dependent chloroplast photorelocation in vascular plants, we wanted to determine the cytoskeletal system responsible for the function of these proteins in moss. We performed gene- specific silencing using RNA interference in P. patens. We confirmed existing reports using gene knockouts, that PpKAC1 and PpKAC2 are required for chloroplast dispersion under uniform white light conditions, and that the two proteins are functionally equivalent. To address the specificcytoskeletal elements responsible for motility, this loss-of- function approach was combined with cytoskeleton-targeted drug studies. We found that, in P. patens, these KACs mediate the chloroplast light-avoidance response in an actin filament- dependent, rather than a microtubule-dependent manner. Using correlation-decay analysis of cytoskeletal dynamics, we found that PpKAC stabilizes cortical actin filaments, but has no effect on microtubule dynamics.
文摘Breast cancer resistance protein (Bcrp) is an ATP-dependent efflux drug transporter. It has a diverse spectrum of hydrophilic and hydrophobic substrates ranging from anticancer, antiviral and antihypertensive drugs, to organic anions, antibiotics, phytoestrogens (e.g., genistein, daidzein, coumestrol), xenoestrogens and steroids (e.g., dehydroepiandrosterone sulfate). Bcrp is an integral membrane protein in cancer and normal cells within multiple organs (e.g., brain, placenta, intestine and testis) that maintains cellular homeostasis by extruding drugs and harmful substances from the inside of cells. In the brain, Bcrp is a major component of the blood- brain barrier located on endothelial cells near tight junctions (TJs). However, Bcrp is absent at the Sertoli cell blood-testis barrier (BTB); instead, it is localized almost exclusively to the endothelial TJ in microvessels in the interstitium and the peritubular myoid cells in the tunica propria. Recent studies have shown that Bcrp is also expressed stage specifically and spatiotemporally by Sertoli and germ cells in the seminiferous epithelium of rat testes, limited only to a testis-specific cell adhesion ultrastructure known as the apical ectoplasmic specialisation (ES) in stage VI-early VIII tubules. These findings suggest that Bcrp is equipped by late spermatids and Sertoli cells to protect late-stage spermatids completing spermiogenesis. Furthermore, Bcrp was found to be associated with F (filamentous)-actin and several actin regulatory proteins at the apical ES and might be involved in the organisation of actin filaments at the apical ES in stage VII-VIII tubules. These findings will be carefully evaluated in this brief review.
文摘Background: Malassezia pachydermatis is the main causative agent of canine otitis and also of a myriad of dermatological problems in companion animals;its interaction mechanisms with host cells are still unclear. Objectives: To establish an in vitro infection model of M. pachydermatis-exposed RK13 cells in order to evaluate cell morphological changes as well as changes in the structure of actin filaments. Methods: Cultures of RK13 cells were infected with M. pachydermatis, alterations caused by the yeast were evaluated by optical and fluorescence microscopy. Results: M. pachydermatis adheres itself to the cell and produces the formation of multiple agglomerates that cause changes in cell morphology, formation of cell aggregates in overlays, presence of syncytia and destruction of cell culture structure. The damaged cells presented changes in the actin filaments consisting of thickening of the cell cortex and loss of stress fibers. On the other hand, the formation of perinuclear actin rings in the yeasts was observed. Conclusions: An in vitro infection model was established with M. pachydermatis and alterations in cell morphology were observed consisting of changes in the structure of the actin filaments, overgrowth of the cells and the presence of syncytia.