针对先验信息为加速退化数据的情况,提出了利用非共轭先验分布进行Bayesian统计推断的剩余寿命预测方法。不预先假定Wiener过程参数值的分布类型,利用加速系数将加速应力下的参数值折算到工作应力水平下,进而使用Anderson-Darling方法...针对先验信息为加速退化数据的情况,提出了利用非共轭先验分布进行Bayesian统计推断的剩余寿命预测方法。不预先假定Wiener过程参数值的分布类型,利用加速系数将加速应力下的参数值折算到工作应力水平下,进而使用Anderson-Darling方法确定参数值的最优拟合分布类型。在对参数值进行折算时,根据周源泉提出的理论对Wiener过程参数与加速应力之间的关系进行了推导。参数估计时,通过极大似然法得到超参数的估计值,利用WinBUGS软件实现Markov Chain Monte Carlo仿真得到参数的后验均值。通过某型军用电连接器寿命预测实例验证了所提方法的实用价值和研究意义,结果表明本方法可有效解决先验信息为加速退化数据时进行剩余寿命预测的难题。展开更多
为了提高剩余寿命预测的可信度,针对进行过加速老化试验的产品,提出利用Gamma过程参数的非共轭先验分布进行Bayesian统计推断的剩余寿命预测方法.将加速老化数据作为先验信息,利用Gamma过程进行老化建模,通过加速因子获得形状参数在工...为了提高剩余寿命预测的可信度,针对进行过加速老化试验的产品,提出利用Gamma过程参数的非共轭先验分布进行Bayesian统计推断的剩余寿命预测方法.将加速老化数据作为先验信息,利用Gamma过程进行老化建模,通过加速因子获得形状参数在工作应力下的折算值,使用Anderson-Darling统计量确定随机参数的先验分布.将产品工作中的少量实测数据作为现场信息,利用基于Gibbs抽样的Markov Chain Monte Carlo(MCMC)仿真得到参数的后验均值.以某型导弹电连接器为例说明了该方法的研究意义和工程应用价值.展开更多
Abstract With the recent products being more reliable, engineers cannot obtain enough failure or degradation information through the design period and even the product lifetime, therefore, accel erated life test (ALT...Abstract With the recent products being more reliable, engineers cannot obtain enough failure or degradation information through the design period and even the product lifetime, therefore, accel erated life test (ALT) ihas become the most popular way to quantify the life characteristics of prod ucts. Test design is the most essential topic, such as testing duration, stress profile, data inference, etc. In this paper, a method and procedure based on theoretical life models is proposed to determine the accelerated stress profile. Firstly, the method for theoretical life calculation is put forward based on the main failure mechanism analysis and the theoretical life models. Secondly, the method is pro vided to determine the accelerated stress profile, including the method to determine the accelerated stress types and the stress range on the basis of the main failure mechanism analysis, the method to determine the acceleration factor and the accelerated stress level based on life quantitative calcula tion models, and the collaborative analysis method of the accelerated test time while taking the mul tiple failure mechanisms into consideration. Lastly, the actuator is taken as an example to describe the procedure of the method and the engineering applicability and the validity are verified.展开更多
文摘针对先验信息为加速退化数据的情况,提出了利用非共轭先验分布进行Bayesian统计推断的剩余寿命预测方法。不预先假定Wiener过程参数值的分布类型,利用加速系数将加速应力下的参数值折算到工作应力水平下,进而使用Anderson-Darling方法确定参数值的最优拟合分布类型。在对参数值进行折算时,根据周源泉提出的理论对Wiener过程参数与加速应力之间的关系进行了推导。参数估计时,通过极大似然法得到超参数的估计值,利用WinBUGS软件实现Markov Chain Monte Carlo仿真得到参数的后验均值。通过某型军用电连接器寿命预测实例验证了所提方法的实用价值和研究意义,结果表明本方法可有效解决先验信息为加速退化数据时进行剩余寿命预测的难题。
文摘为了提高剩余寿命预测的可信度,针对进行过加速老化试验的产品,提出利用Gamma过程参数的非共轭先验分布进行Bayesian统计推断的剩余寿命预测方法.将加速老化数据作为先验信息,利用Gamma过程进行老化建模,通过加速因子获得形状参数在工作应力下的折算值,使用Anderson-Darling统计量确定随机参数的先验分布.将产品工作中的少量实测数据作为现场信息,利用基于Gibbs抽样的Markov Chain Monte Carlo(MCMC)仿真得到参数的后验均值.以某型导弹电连接器为例说明了该方法的研究意义和工程应用价值.
基金supported by the Ministry Level Project of China
文摘Abstract With the recent products being more reliable, engineers cannot obtain enough failure or degradation information through the design period and even the product lifetime, therefore, accel erated life test (ALT) ihas become the most popular way to quantify the life characteristics of prod ucts. Test design is the most essential topic, such as testing duration, stress profile, data inference, etc. In this paper, a method and procedure based on theoretical life models is proposed to determine the accelerated stress profile. Firstly, the method for theoretical life calculation is put forward based on the main failure mechanism analysis and the theoretical life models. Secondly, the method is pro vided to determine the accelerated stress profile, including the method to determine the accelerated stress types and the stress range on the basis of the main failure mechanism analysis, the method to determine the acceleration factor and the accelerated stress level based on life quantitative calcula tion models, and the collaborative analysis method of the accelerated test time while taking the mul tiple failure mechanisms into consideration. Lastly, the actuator is taken as an example to describe the procedure of the method and the engineering applicability and the validity are verified.