Measurements of the mass ablation rate of aluminum(Al)have been completed at the Omega Laser Facility.These measurements show that the mass-ablation rate of Al is higher than plastic(CH),comparable to high density car...Measurements of the mass ablation rate of aluminum(Al)have been completed at the Omega Laser Facility.These measurements show that the mass-ablation rate of Al is higher than plastic(CH),comparable to high density carbon(HDC),and lower than beryllium.The mass-ablation rate is consistent with predictions using a 1D Lagrangian code,Helios.The results suggest Al capsules have a reasonable ablation pressure even with a higher albedo than beryllium or carbon ablators and further investigation into the viability of Al capsules for ignition should be pursued.展开更多
The numerical simulation of flow field around Hayabusa capsule loaded with light-weight ablator thermal response coupled with pyrolysis gas flow inside the ablator was carried out. In addition, the radiation from high...The numerical simulation of flow field around Hayabusa capsule loaded with light-weight ablator thermal response coupled with pyrolysis gas flow inside the ablator was carried out. In addition, the radiation from high temperature gas around the capsule was coupled with flow field. Hayabusa capsule reentered the atmosphere about 12 km/sec in velocity and Mach number about 30. During such an atmospheric entry, space vehicle is exposed to very savior aerodynamic heating due to convection and radiation. In this study, Hayabusa capsule was treated as a typical model of the atmospheric entry spacecraft. The light-weight ablator had porous structure, and permeability was an important parameter to analyze flow inside ablator. In this study, permeability was a variable parameter dependent on density of ablator. It is found that the effect of permeability of light-weight ablator was important with this analysis.展开更多
The paper investigates theoretically the optimization of the doped ablator layers for the plastic ignition capsule. The high-resolved one-dimensional implosion simulations show that the inner pure CFI layer of the Si-...The paper investigates theoretically the optimization of the doped ablator layers for the plastic ignition capsule. The high-resolved one-dimensional implosion simulations show that the inner pure CFI layer of the Si-doped design is excessively preheated by the hard x-ray, leading to the unstable ablator-fuel interface compared to the Ge-doped capsule. This is because that the Si K-shell absorption edge (1.8 keV) is higher than the Ge L-edge (1.3 keV), and Si dopant makes more hard x-ray penetrate through the doped ablator layers to preheat the inner pure CH layer. So an optimization of the doped ablator layers (called "Si/Ge capsule") is performed: an Si-doped CH layer is placed next to the outer pure CH layer to keep the high implosion velocity; next to the Si-doped layer is a thin Ge-doped layer, in order to absorb the hard x-ray and protect the inner undoped CH-layer from excessively preheating. The simulations show that the Si/Ge capsule can effectively improve hydrodynamic stability at the ablator-fuel interface while keeping the high implosion velocity.展开更多
The Be-based materials with many particular properties lead to an important research subject. The investigation progresses in the fabrication technologies are introduced here, including main three kinds of Be-based ma...The Be-based materials with many particular properties lead to an important research subject. The investigation progresses in the fabrication technologies are introduced here, including main three kinds of Be-based materials, such as Be–Cu capsule, Be_2C ablator and high-purity Be material. Compared with the pioneer workgroup on Be-based materials,the differences in Be–Cu target fabrication were described, and a grain refinement technique by an active hydrogen reaction for Be coating was proposed uniquely. Be_2C coatings were first prepared by the DC reactive magnetron sputtering with a high deposition rate(~300 nm/h). Pure polycrystalline Be_2C films with uniform microstructures,smooth surface, high density(~2.2 g · cm^3) and good optical transparency were fabricated. In addition, the high-purity Be materials with metal impurities in a ppm magnitude were fabricated by the pyrolysis of organometallic Be.展开更多
Flexible triboelectric nanogenerators (TENGs)-based pressure sensors are very essential for the wide-range applications, comprising wearable healthcare systems, intuitive human-device interfaces, electronic-skin (e-sk...Flexible triboelectric nanogenerators (TENGs)-based pressure sensors are very essential for the wide-range applications, comprising wearable healthcare systems, intuitive human-device interfaces, electronic-skin (e-skin), and artificial intelligence. Most of conventional fabrication methods used to produce high-performance TENGs involve plasma treatment, photolithography, printing, and electro-deposition. However, these fabrication techniques are expensive, multi-step, time-consuming and not suitable for mass production, which are the main barriers for efficient and cost-effective commercialization of TENGs. Here, we established a highly reliable scheme for the fabrication of a novel eco-friendly, low cost, and TENG-based pressure sensor (TEPS) designed for usage in self-powered-human gesture detection (SP-HGD) likewise wearable healthcare applications. The sensors with microstructured electrodes performed well with high sensitivity (7.697 kPa^-1), a lower limit of detection (~ 1 Pa), faster response time (< 9.9 ms), and highly stable over > 4,000 compression-releasing cycles. The proposed method is suitable for the adaptable fabrication of TEPS at an extremely low cost with possible applications in self-powered systems, especially e-skin and healthcare applications.展开更多
基金This work is performed under the auspices of the U.S.Department of Energy by LANL undercontract DE-AC52-06NA25396.
文摘Measurements of the mass ablation rate of aluminum(Al)have been completed at the Omega Laser Facility.These measurements show that the mass-ablation rate of Al is higher than plastic(CH),comparable to high density carbon(HDC),and lower than beryllium.The mass-ablation rate is consistent with predictions using a 1D Lagrangian code,Helios.The results suggest Al capsules have a reasonable ablation pressure even with a higher albedo than beryllium or carbon ablators and further investigation into the viability of Al capsules for ignition should be pursued.
文摘The numerical simulation of flow field around Hayabusa capsule loaded with light-weight ablator thermal response coupled with pyrolysis gas flow inside the ablator was carried out. In addition, the radiation from high temperature gas around the capsule was coupled with flow field. Hayabusa capsule reentered the atmosphere about 12 km/sec in velocity and Mach number about 30. During such an atmospheric entry, space vehicle is exposed to very savior aerodynamic heating due to convection and radiation. In this study, Hayabusa capsule was treated as a typical model of the atmospheric entry spacecraft. The light-weight ablator had porous structure, and permeability was an important parameter to analyze flow inside ablator. In this study, permeability was a variable parameter dependent on density of ablator. It is found that the effect of permeability of light-weight ablator was important with this analysis.
基金Supported by the National Natural Science Foundation of China under Grant Nos.11105013,11205017,and 11371065the National High-Tech R&D Program(863 Program) through Grant No.2012AA01A303
文摘The paper investigates theoretically the optimization of the doped ablator layers for the plastic ignition capsule. The high-resolved one-dimensional implosion simulations show that the inner pure CFI layer of the Si-doped design is excessively preheated by the hard x-ray, leading to the unstable ablator-fuel interface compared to the Ge-doped capsule. This is because that the Si K-shell absorption edge (1.8 keV) is higher than the Ge L-edge (1.3 keV), and Si dopant makes more hard x-ray penetrate through the doped ablator layers to preheat the inner pure CH layer. So an optimization of the doped ablator layers (called "Si/Ge capsule") is performed: an Si-doped CH layer is placed next to the outer pure CH layer to keep the high implosion velocity; next to the Si-doped layer is a thin Ge-doped layer, in order to absorb the hard x-ray and protect the inner undoped CH-layer from excessively preheating. The simulations show that the Si/Ge capsule can effectively improve hydrodynamic stability at the ablator-fuel interface while keeping the high implosion velocity.
基金supported by the National Natural Science Foundation of China (11204280)Laboratory of Precision Manufacturing Technology, CAEP (ZZ15011)
文摘The Be-based materials with many particular properties lead to an important research subject. The investigation progresses in the fabrication technologies are introduced here, including main three kinds of Be-based materials, such as Be–Cu capsule, Be_2C ablator and high-purity Be material. Compared with the pioneer workgroup on Be-based materials,the differences in Be–Cu target fabrication were described, and a grain refinement technique by an active hydrogen reaction for Be coating was proposed uniquely. Be_2C coatings were first prepared by the DC reactive magnetron sputtering with a high deposition rate(~300 nm/h). Pure polycrystalline Be_2C films with uniform microstructures,smooth surface, high density(~2.2 g · cm^3) and good optical transparency were fabricated. In addition, the high-purity Be materials with metal impurities in a ppm magnitude were fabricated by the pyrolysis of organometallic Be.
文摘Flexible triboelectric nanogenerators (TENGs)-based pressure sensors are very essential for the wide-range applications, comprising wearable healthcare systems, intuitive human-device interfaces, electronic-skin (e-skin), and artificial intelligence. Most of conventional fabrication methods used to produce high-performance TENGs involve plasma treatment, photolithography, printing, and electro-deposition. However, these fabrication techniques are expensive, multi-step, time-consuming and not suitable for mass production, which are the main barriers for efficient and cost-effective commercialization of TENGs. Here, we established a highly reliable scheme for the fabrication of a novel eco-friendly, low cost, and TENG-based pressure sensor (TEPS) designed for usage in self-powered-human gesture detection (SP-HGD) likewise wearable healthcare applications. The sensors with microstructured electrodes performed well with high sensitivity (7.697 kPa^-1), a lower limit of detection (~ 1 Pa), faster response time (< 9.9 ms), and highly stable over > 4,000 compression-releasing cycles. The proposed method is suitable for the adaptable fabrication of TEPS at an extremely low cost with possible applications in self-powered systems, especially e-skin and healthcare applications.