AIM To evaluate the safety and efficacy of the bioartificial liver support system in canines with acute liver failure (ALF). METHODS Nine canines with acute liver failure by acetaminophen induced received TECA Ⅰ...AIM To evaluate the safety and efficacy of the bioartificial liver support system in canines with acute liver failure (ALF). METHODS Nine canines with acute liver failure by acetaminophen induced received TECA Ⅰ bioartificial liver support system (BALSS) from Hong Kong TECA LTD Co. Blood was perfused through a hollow fiber tube containing (1 2)×10 10 the porcine hepatocytes. In contrast, another 10 canines with acute liver failure by Acetaminophen received drugs. Each treatment lasted 6 hours. RESULTS BALSS treatment resulted in beneficial effects for acetaminophen induced ALF canines with survival and with the recovery of the liver functions and tissues, and plasma ammonia decreased from 135 9μmol/L ± 17 5μmol/L to 65 7μmol/L ± 22 0μmol/L , 32 5μmol/L ± 8 8μmol/L , GPT from 97 8U/L ± 8 7U/L to 64 8U/L ± 11 9U/L , 19 0U/L ± 6 3U/L , GOT from 103 0U/L ± 16 7U/L to 75 7U/L ± 19 6U/L , 26 5U/L ± 5 0U/L , and AKP from 158 3U/L ± 12 1U/L to 114 5U/L ± 19 8U/L , 43 8U/L ± 5 6U/L during and after the treatment. In contrast, 10 ALF canines in both the drug and control groups died 1 or 2 days after treatment. CONCLUSION TECA 1 artificial liver support system is safe and efficacious for canines with acute liver failure.展开更多
Hepatic injury and subsequent hepatic failure due to both intentional and non-intentional overdose of acetaminophen (APAP) has affected patients for decades,and involves the cornerstone metabolic pathways which take p...Hepatic injury and subsequent hepatic failure due to both intentional and non-intentional overdose of acetaminophen (APAP) has affected patients for decades,and involves the cornerstone metabolic pathways which take place in the microsomes within hepatocytes.APAP hepatotoxicity remains a global issue;in the United States,in particular,it accounts for more than 50% of overdose-related acute liver failure and approximately 20% of the liver transplant cases.The pathophysiology,disease course and management of acute liver failure secondary to APAP toxicity remain to be precisely elucidated,and adverse patient outcomes with increased morbidity and mortality continue to occur.Although APAP hepatotoxicity follows a predictable timeline of hepatic failure,its clinical presentation might vary.N-acetylcysteine (NAC) therapy is considered as the mainstay therapy,but liver transplantation might represent a life-saving procedure for selected patients.Future research focus in this field may benefit from shifting towards obtaining antidotal knowledge at the molecular level,with focus on the underlying molecular signaling pathways.展开更多
Drug-induced liver injury(DILI) has become a major topic in the field of Hepatology and Gastroenterology. DILI can be clinically divided into three phenotypes: hepatocytic, cholestatic and mixed. Although the clinical...Drug-induced liver injury(DILI) has become a major topic in the field of Hepatology and Gastroenterology. DILI can be clinically divided into three phenotypes: hepatocytic, cholestatic and mixed. Although the clinical manifestations of DILI are variable and the pathogenesis complicated, recent insights using improved preclinical models, have allowed a better understanding of the mechanisms that trigger liver damage. In this review, we will discuss the pathophysiological mechanisms underlying DILI. The toxicity of the drug eventually induces hepatocellular damage through multiple molecular pathways, including direct hepatic toxicity and innate and adaptive immune responses. Drugs or their metabolites, such as the common analgesic, acetaminophen, can cause direct hepatic toxicity through accumulation of reactive oxygen species and mitochondrial dysfunction. The innate and adaptive immune responses play also a very important role in the occurrence of idiosyncratic DILI. Furthermore, we examine common forms of hepatocyte death and their association with the activation of specific signaling pathways.展开更多
We investigated the potential hepatoprotective effect of Radix Bupleuri(RB) by inducing acute liver injury(ALI) in an animal model using acetaminophen(APAP) after pretreatment with RB aqueous extract for three consecu...We investigated the potential hepatoprotective effect of Radix Bupleuri(RB) by inducing acute liver injury(ALI) in an animal model using acetaminophen(APAP) after pretreatment with RB aqueous extract for three consecutive days. Compared to those of the APAP group, the biochemical and histological results of the RB pretreatment group showed lower serum aspartate transaminase(AST) and alanine transaminase(ALT) levels as well as less liver damage. Pharmacokinetic study of the toxicity related marker acetaminophen-cysteine(APC) revealed a lower exposure level in rats, suggesting that RB alleviated APAP-induced liver damage by preventing glutathione(GSH) depletion. The results of cocktail approach showed significant inhibition of CYP2 E1 and CYP3 A activity. Further investigation revealed the increasing of CYP2 E1 and CYP3 A protein was significantly inhibited in pretreatment group,while no obvious effect on gene expression was found. Therefore, this study clearly demonstrates that RB exhibited significant protective action against APAP-induced acute live injury via pretreatment, and which is partly through inhibiting the increase of activity and translation of cytochrome P450 enzymes, rather than gene transcription.展开更多
文摘AIM To evaluate the safety and efficacy of the bioartificial liver support system in canines with acute liver failure (ALF). METHODS Nine canines with acute liver failure by acetaminophen induced received TECA Ⅰ bioartificial liver support system (BALSS) from Hong Kong TECA LTD Co. Blood was perfused through a hollow fiber tube containing (1 2)×10 10 the porcine hepatocytes. In contrast, another 10 canines with acute liver failure by Acetaminophen received drugs. Each treatment lasted 6 hours. RESULTS BALSS treatment resulted in beneficial effects for acetaminophen induced ALF canines with survival and with the recovery of the liver functions and tissues, and plasma ammonia decreased from 135 9μmol/L ± 17 5μmol/L to 65 7μmol/L ± 22 0μmol/L , 32 5μmol/L ± 8 8μmol/L , GPT from 97 8U/L ± 8 7U/L to 64 8U/L ± 11 9U/L , 19 0U/L ± 6 3U/L , GOT from 103 0U/L ± 16 7U/L to 75 7U/L ± 19 6U/L , 26 5U/L ± 5 0U/L , and AKP from 158 3U/L ± 12 1U/L to 114 5U/L ± 19 8U/L , 43 8U/L ± 5 6U/L during and after the treatment. In contrast, 10 ALF canines in both the drug and control groups died 1 or 2 days after treatment. CONCLUSION TECA 1 artificial liver support system is safe and efficacious for canines with acute liver failure.
文摘Hepatic injury and subsequent hepatic failure due to both intentional and non-intentional overdose of acetaminophen (APAP) has affected patients for decades,and involves the cornerstone metabolic pathways which take place in the microsomes within hepatocytes.APAP hepatotoxicity remains a global issue;in the United States,in particular,it accounts for more than 50% of overdose-related acute liver failure and approximately 20% of the liver transplant cases.The pathophysiology,disease course and management of acute liver failure secondary to APAP toxicity remain to be precisely elucidated,and adverse patient outcomes with increased morbidity and mortality continue to occur.Although APAP hepatotoxicity follows a predictable timeline of hepatic failure,its clinical presentation might vary.N-acetylcysteine (NAC) therapy is considered as the mainstay therapy,but liver transplantation might represent a life-saving procedure for selected patients.Future research focus in this field may benefit from shifting towards obtaining antidotal knowledge at the molecular level,with focus on the underlying molecular signaling pathways.
基金Supported by the Spanish Ministerio de Economía y Competitividad(MINECO),No.RyC 2014-15242No.SAF2016-78711 to Martinez-Naves E and Cubero FJ.Martinez-Naves E+1 种基金Cubero FJ are part of the UCM group"Lymphocyte Immunobiology",Ref.920631(imas12-associated,Ref.IBL-6)Chinese Scholarship Council fellow to YeH
文摘Drug-induced liver injury(DILI) has become a major topic in the field of Hepatology and Gastroenterology. DILI can be clinically divided into three phenotypes: hepatocytic, cholestatic and mixed. Although the clinical manifestations of DILI are variable and the pathogenesis complicated, recent insights using improved preclinical models, have allowed a better understanding of the mechanisms that trigger liver damage. In this review, we will discuss the pathophysiological mechanisms underlying DILI. The toxicity of the drug eventually induces hepatocellular damage through multiple molecular pathways, including direct hepatic toxicity and innate and adaptive immune responses. Drugs or their metabolites, such as the common analgesic, acetaminophen, can cause direct hepatic toxicity through accumulation of reactive oxygen species and mitochondrial dysfunction. The innate and adaptive immune responses play also a very important role in the occurrence of idiosyncratic DILI. Furthermore, we examine common forms of hepatocyte death and their association with the activation of specific signaling pathways.
基金supported by State Project for Essential Drug Research and Development of China(No.20152X09303001)
文摘We investigated the potential hepatoprotective effect of Radix Bupleuri(RB) by inducing acute liver injury(ALI) in an animal model using acetaminophen(APAP) after pretreatment with RB aqueous extract for three consecutive days. Compared to those of the APAP group, the biochemical and histological results of the RB pretreatment group showed lower serum aspartate transaminase(AST) and alanine transaminase(ALT) levels as well as less liver damage. Pharmacokinetic study of the toxicity related marker acetaminophen-cysteine(APC) revealed a lower exposure level in rats, suggesting that RB alleviated APAP-induced liver damage by preventing glutathione(GSH) depletion. The results of cocktail approach showed significant inhibition of CYP2 E1 and CYP3 A activity. Further investigation revealed the increasing of CYP2 E1 and CYP3 A protein was significantly inhibited in pretreatment group,while no obvious effect on gene expression was found. Therefore, this study clearly demonstrates that RB exhibited significant protective action against APAP-induced acute live injury via pretreatment, and which is partly through inhibiting the increase of activity and translation of cytochrome P450 enzymes, rather than gene transcription.