Controlling the heat and particle fluxes in the plasma edge and on the plasma facing components is important for the safe and effective operation of every magnetically confined fusion device.This was attempted on Wend...Controlling the heat and particle fluxes in the plasma edge and on the plasma facing components is important for the safe and effective operation of every magnetically confined fusion device.This was attempted on Wendelstein 7-X in the first operational campaign,with the modification of the magnetic configuration by use of the trim coils and tuning the field coil currents,commonly named iota scan.Ideally,the heat loads on the five limiters are equal.However,they differ between each limiter and are non-uniform,due to the(relatively small) error fields caused by the misalignment of components.It is therefore necessary to study the influence of the configuration changes on the transport of heat and particles in the plasma edge caused by the application of error fields and the change of the magnetic configuration.In this paper the upstream measurements conducted with the combined probe are compared to the downstream measurements with the DIAS infrared camera on the limiter.展开更多
Probe manipulators are a versatile addition to typical plasma edge diagnostics.Equipped with material samples they allow for detailed investigation of plasma–wall interaction processes,such as material erosion,deposi...Probe manipulators are a versatile addition to typical plasma edge diagnostics.Equipped with material samples they allow for detailed investigation of plasma–wall interaction processes,such as material erosion,deposition or impurity transport pathways.When combined with electrical probes,a study of scrape-off layer and plasma edge density,temperature and flow profiles as well as magnetic topologies is possible.A mid-plane manipulator is already in operation on Wendelstein 7-X.A system in the divertor region is currently under development.In the present paper we discuss the critical issue of heat and power loads,power redistribution and experimental access to the complex magnetic topology of Wendelstein 7-X.All the aforementioned aspects are of relevance for the design and operation of a probe manipulator in a device like Wendelstein?7-X.A focus is put on the topological region that is accessible for the different coil current configurations at Wendelstein 7-X and the power load on the manipulator with respect to the resulting different magnetic configurations.Qualitative analysis of power loads on plasma-facing components is performed using a numerical tracer particle diffusion tool provided via the Wendelstein 7-X Webservices.展开更多
The recently modified EMC3-EIRENE code package has been widely applied as an edge-plasma analysis tool and resulted in successful validation against various measured trends seen in stellarator and tokamak plasma bound...The recently modified EMC3-EIRENE code package has been widely applied as an edge-plasma analysis tool and resulted in successful validation against various measured trends seen in stellarator and tokamak plasma boundaries.It has been shown that the code package applied for Wendelstein 7-X(W7-X)discharges in the interpretive mode can assess the impact of impurity effects on the electron density,measured by a set of Langmuir probes.In particular the spatial quantification of impurities and effects from the effective charge state Zeff and effective mass meff,which are non-trivial to record by diagnostics,were examined.The results showed that earlier assumptions of the effective charge-state distribution and effective mass for reported Langmuir probe measurements must be revised.Subsequently,reprocessing these measurements with code-interpreted spatial profiles of the effective charge state and effective mass led to an overall improved physical consistency.展开更多
YBaCuO(YBCO) films with co-doping of Ba Ti O(BTO) and YOnanostructures were successfully fabricated on La Al O(LAO) substrate by metal organic deposition using trifluoroacetates(TFA-MOD). The focus of this study was t...YBaCuO(YBCO) films with co-doping of Ba Ti O(BTO) and YOnanostructures were successfully fabricated on La Al O(LAO) substrate by metal organic deposition using trifluoroacetates(TFA-MOD). The focus of this study was to optimize the process conditions during the firing heat treatment of high critical current density(J C)-co-doped YBCO films. The effect of the firing temperatures on both the surface morphology and the superconducting properties for the doped YBCO films was systematically studied. According to the X-ray diffraction(XRD) and scanning electron microscopy(SEM) results,the films prepared at 820 and 850 °C show poor electrical performance due to impurity phases and large pores. In contrast, the dense YBCO films prepared at 830 and840 °C with the critical current densities of 10 MA-cm(77 K, 0 T) are obtained.展开更多
We report our progress in the high-temperature superconductor(HTS)Josephson junction fabrication process founded on utilizing a focused helium ion beam damaging technique and discuss the expected device performance at...We report our progress in the high-temperature superconductor(HTS)Josephson junction fabrication process founded on utilizing a focused helium ion beam damaging technique and discuss the expected device performance attainable with the HTS multi-junction device technology.Both the achievable high value of characteristic voltage V_(C)=I_(C)R_(N)of Josephson junctions and the ability to design a large number of arbitrary located Josephson junctions allow narrowing the existing gap in design abilities for lowtemperature superconductor(LTS)and HTS circuits even with using a single YBa_(2)Cu_(3)O_(7-x) film layer.A one-layer topology of active electrically small antenna is suggested and its voltage response characteristics are considered.展开更多
High-temperature superconducting(HTS)rare-earth Ba_(2)Cu_(3)O_(7-x)(REBCO)coated conductors(CCs)have significant potential in high-current and high-field applications.However,owing to the weak interface strength of th...High-temperature superconducting(HTS)rare-earth Ba_(2)Cu_(3)O_(7-x)(REBCO)coated conductors(CCs)have significant potential in high-current and high-field applications.However,owing to the weak interface strength of the laminated composite REBCO CCs,the damage induced by the thermal mismatch stress under a combination of epoxy impregnation,cooling,and quenching can cause premature degradation of the critical current.In this study,a three-dimensional(3D)electromagnetic-thermal-mechanical model based on the H-formulation and cohesive zone model(CZM)is developed to study the critical current degradation characteristics in an epoxy-impregnated REBCO CC caused by the damage during a quench.The temperature variation,critical current degradation of the REBCO CC,and its degradation onset temperature calculated by the numerical model are in agreement with the experimental data taken from the literature.The delamination of the REBCO CC predicted by the numerical model is consistent with the experimental result.The numerical results also indicate that the shear stress is the main contributor to the damage propagation inside the REBCO CC.The premature degradation of the critical current during a quench is closely related to the interface shear strength inside the REBCO CC.Finally,the effects of the coefficient of thermal expansion(CTE)of the epoxy resin,thickness of the substrate,and substrate material on the critical current degradation characteristics of the epoxy-impregnated REBCO CC during a quench are also discussed.These results help us understand the relationship between the current-carrying degradation and damage in the HTS applications.展开更多
基金funding from the Euratom research and training program 2014–2018 under grant agreement No.633053
文摘Controlling the heat and particle fluxes in the plasma edge and on the plasma facing components is important for the safe and effective operation of every magnetically confined fusion device.This was attempted on Wendelstein 7-X in the first operational campaign,with the modification of the magnetic configuration by use of the trim coils and tuning the field coil currents,commonly named iota scan.Ideally,the heat loads on the five limiters are equal.However,they differ between each limiter and are non-uniform,due to the(relatively small) error fields caused by the misalignment of components.It is therefore necessary to study the influence of the configuration changes on the transport of heat and particles in the plasma edge caused by the application of error fields and the change of the magnetic configuration.In this paper the upstream measurements conducted with the combined probe are compared to the downstream measurements with the DIAS infrared camera on the limiter.
基金funding from the Euratom research and training programme 2014–2018 under grant agreement no.633053
文摘Probe manipulators are a versatile addition to typical plasma edge diagnostics.Equipped with material samples they allow for detailed investigation of plasma–wall interaction processes,such as material erosion,deposition or impurity transport pathways.When combined with electrical probes,a study of scrape-off layer and plasma edge density,temperature and flow profiles as well as magnetic topologies is possible.A mid-plane manipulator is already in operation on Wendelstein 7-X.A system in the divertor region is currently under development.In the present paper we discuss the critical issue of heat and power loads,power redistribution and experimental access to the complex magnetic topology of Wendelstein 7-X.All the aforementioned aspects are of relevance for the design and operation of a probe manipulator in a device like Wendelstein?7-X.A focus is put on the topological region that is accessible for the different coil current configurations at Wendelstein 7-X and the power load on the manipulator with respect to the resulting different magnetic configurations.Qualitative analysis of power loads on plasma-facing components is performed using a numerical tracer particle diffusion tool provided via the Wendelstein 7-X Webservices.
基金This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014–2018 under Grant Agreement No.633053.
文摘The recently modified EMC3-EIRENE code package has been widely applied as an edge-plasma analysis tool and resulted in successful validation against various measured trends seen in stellarator and tokamak plasma boundaries.It has been shown that the code package applied for Wendelstein 7-X(W7-X)discharges in the interpretive mode can assess the impact of impurity effects on the electron density,measured by a set of Langmuir probes.In particular the spatial quantification of impurities and effects from the effective charge state Zeff and effective mass meff,which are non-trivial to record by diagnostics,were examined.The results showed that earlier assumptions of the effective charge-state distribution and effective mass for reported Langmuir probe measurements must be revised.Subsequently,reprocessing these measurements with code-interpreted spatial profiles of the effective charge state and effective mass led to an overall improved physical consistency.
基金financially supported by the National Natural Science Foundation of China (Nos. 51002149 and 51272250)the National Basic Research Program of China (No. 2011CBA00105)+1 种基金the National High Technology Research and Development Program of China (No. 2014AA032702)the Beijing Natural Science Foundation, China (No. 2152035)
文摘YBaCuO(YBCO) films with co-doping of Ba Ti O(BTO) and YOnanostructures were successfully fabricated on La Al O(LAO) substrate by metal organic deposition using trifluoroacetates(TFA-MOD). The focus of this study was to optimize the process conditions during the firing heat treatment of high critical current density(J C)-co-doped YBCO films. The effect of the firing temperatures on both the surface morphology and the superconducting properties for the doped YBCO films was systematically studied. According to the X-ray diffraction(XRD) and scanning electron microscopy(SEM) results,the films prepared at 820 and 850 °C show poor electrical performance due to impurity phases and large pores. In contrast, the dense YBCO films prepared at 830 and840 °C with the critical current densities of 10 MA-cm(77 K, 0 T) are obtained.
基金supported by the National Key R&D Program of China(Grant No.2022YFA1603900)in part by the Russian Science Foundation(RSCF)(Grant No.19-72-10016-P).
文摘We report our progress in the high-temperature superconductor(HTS)Josephson junction fabrication process founded on utilizing a focused helium ion beam damaging technique and discuss the expected device performance attainable with the HTS multi-junction device technology.Both the achievable high value of characteristic voltage V_(C)=I_(C)R_(N)of Josephson junctions and the ability to design a large number of arbitrary located Josephson junctions allow narrowing the existing gap in design abilities for lowtemperature superconductor(LTS)and HTS circuits even with using a single YBa_(2)Cu_(3)O_(7-x) film layer.A one-layer topology of active electrically small antenna is suggested and its voltage response characteristics are considered.
基金Project supported by the National Natural Science Foundation of China(Nos.12302278,U2241267,12172155,and 11932008)the Fundamental Research Funds for the Central Universities of China(No.lzujbky-2022-48)the Natural Science Foundation of Gansu Province of China(No.24JRRA473)。
文摘High-temperature superconducting(HTS)rare-earth Ba_(2)Cu_(3)O_(7-x)(REBCO)coated conductors(CCs)have significant potential in high-current and high-field applications.However,owing to the weak interface strength of the laminated composite REBCO CCs,the damage induced by the thermal mismatch stress under a combination of epoxy impregnation,cooling,and quenching can cause premature degradation of the critical current.In this study,a three-dimensional(3D)electromagnetic-thermal-mechanical model based on the H-formulation and cohesive zone model(CZM)is developed to study the critical current degradation characteristics in an epoxy-impregnated REBCO CC caused by the damage during a quench.The temperature variation,critical current degradation of the REBCO CC,and its degradation onset temperature calculated by the numerical model are in agreement with the experimental data taken from the literature.The delamination of the REBCO CC predicted by the numerical model is consistent with the experimental result.The numerical results also indicate that the shear stress is the main contributor to the damage propagation inside the REBCO CC.The premature degradation of the critical current during a quench is closely related to the interface shear strength inside the REBCO CC.Finally,the effects of the coefficient of thermal expansion(CTE)of the epoxy resin,thickness of the substrate,and substrate material on the critical current degradation characteristics of the epoxy-impregnated REBCO CC during a quench are also discussed.These results help us understand the relationship between the current-carrying degradation and damage in the HTS applications.