摘要
在全固态电池快速发展的背景下,硫银锗矿型电解质Li_(6)PS_(5)Cl因其高离子导率、加工性能好等特点备受瞩目。电解质中的氯取代显著影响其离子电导率和稳定性等特性,但调节氯含量对界面影响的研究仍有待完善。本文采用固相烧结法制备了x=1.0~1.5的Li_(7-x)PS_(6-x)Cl_(x)电解质,评估氯含量(x=1.0~1.5所对应的氯摩尔分数分别为25%~37.5%)对其理化性质的影响。此外,基于电解质在电池不同部件中的性能表现,结合X光电子能谱与阻抗弛豫时间分布等,系统评估氯含量对界面与性能的影响。Li_(5.7)PS_(4.7)Cl_(1.3)材料在正极中展现出优秀的倍率性能;而对于电解质层,高氯含量材料Li_(5.5)PS_(4.5)Cl_(1.5)将导致正、负极界面劣化,降低循环性能。通过调控氯含量,可平衡离子电导与界面反应,从而提升综合性能。所组装的LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)@Li_(5.7)PS_(4.7)Cl_(1.3)|Li_(6)PS_(5)Cl|LiIn电池,在20 mg/cm^(2)载量、0.5C倍率循环300圈后仍有132.8 mA·h/g的比容量。
In the context of the rapid development of all-solid-state batteries,the argyrodite-type electrolyte Li_(6)PS_(5)Cl has attracted significant attention due to its high ionic conductivity and favorable processing characteristics.The chlorine substitution level in the electrolyte significantly influences its ionic conductivity and stability,yet research on the effects of chlorine content on interfacial interactions remains incomplete.In this study,Li_(7-x)PS_(6-x)Cl_(x)electrolytes with x ranging from 1.0 to1.5were synthesized using a solid-state sintering method,evaluating the impact of x=1.0-1.5related chlorine content(Cl content from 25%-37.5%,mole fraction)on their physicochemical properties.Additionally,based on the performance of the electrolyte in various battery components,a systematic evaluation of the influence of chlorine content on interfacial interactions and performance was conducted,integrating techniques such as X-ray photoelectron spectroscopy and the distribution of impedance relaxation times.The material Li_(5.7)PS_(4.7)Cl_(1.3)exhibits superior rate performance in the cathode.However,electrolyte layers with high chlorine content Li_(5.5)PS_(4.5)Cl_(1.5)lead to degradation at both anode and cathode interfaces,reducing cycle performance.By adjusting the chlorine content,a balance between ionic conductivity and interfacial reactions can be achieved,enhancing the overall battery performance.The assembled LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)@Li_(5.7)PS_(4.7)Cl_(1.3)|Li_(6)PS_(5)Cl|LiIn battery maintains a specific capacity of 132.8 mA·h/g after 300 cycles at loading of 20 mg/cm^(2)and rate of 0.5C.
作者
朱骏昌
刘汉周
胡雅琪
林园园
吴壮志
卢洋
张宗良
刘芳洋
ZHU Junchang;LIU Hanzhou;HU Yaqi;LIN Yuanyuan;WU Zhuangzhi;LU Yang;ZHANG Zhongliang;LIU Fangyang(School of Materials Science and Engineering,Central South University,Changsha 410083,China;School of Metallurgy and Environment,Central South University,Changsha 410083,China;Advanced Battery Materials Engineering Research Center,Ministry of Education,Central South University,Changsha 410083,China;Hunan Provincial Key Laboratory of Nonferrous Value-added Metallurgy,Central South University,Changsha 410083,China;Key Laboratory of National Energy Metal Resources and New Materials,Central South University,Changsha 410083,China)
出处
《中国有色金属学报》
EI
CAS
CSCD
北大核心
2024年第9期3076-3091,共16页
The Chinese Journal of Nonferrous Metals
基金
湖南省重点研发计划资助项目(2023GK2016)。