An efficient and direct procedure has been developed for the preparation of amidoalkyl naphthols by a one-pot condensation of aryl aldehydes, 2-naphthol and urea or amides, in the presence of HClO4-SiO2 as a heterogen...An efficient and direct procedure has been developed for the preparation of amidoalkyl naphthols by a one-pot condensation of aryl aldehydes, 2-naphthol and urea or amides, in the presence of HClO4-SiO2 as a heterogeneous catalyst. The reactions were carried out under reflux and solvent-free conditions. The present methodology offers several advantages such as excellent yields, simple procedure, easy work-up and ecofriendly reaction condition. The catalyst is easily prepared, stable, reusable and efficient under the reaction conditions.展开更多
Novel multifunctional nanoparticles containing a magnetic Fe3O4@SiO2 sphere and a biocompatible block copolymer poly(ethylene glycol)-b-poly(aspartate)(PEG-b-PAsp) were prepared.The silica coated on the superparamagne...Novel multifunctional nanoparticles containing a magnetic Fe3O4@SiO2 sphere and a biocompatible block copolymer poly(ethylene glycol)-b-poly(aspartate)(PEG-b-PAsp) were prepared.The silica coated on the superparamagnetic core was able to achieve a magnetic dispersivity,as well as to protect Fe3O4 against oxidation and acid corrosion.The PAsp block was grafted to the surface of Fe3O4@SiO2 nanoparticles by amido bonds,and the PEG block formed the outermost shell.The anticancer agent doxorubicin(DOX) was loaded into the hybrid nanoparticles via an electrostatic interaction between DOX and PAsp.The release rate of DOX could be adjusted by the pH value.展开更多
文摘An efficient and direct procedure has been developed for the preparation of amidoalkyl naphthols by a one-pot condensation of aryl aldehydes, 2-naphthol and urea or amides, in the presence of HClO4-SiO2 as a heterogeneous catalyst. The reactions were carried out under reflux and solvent-free conditions. The present methodology offers several advantages such as excellent yields, simple procedure, easy work-up and ecofriendly reaction condition. The catalyst is easily prepared, stable, reusable and efficient under the reaction conditions.
基金supported by the National Natural Science Foundation of China (Grant Nos 20774051,50625310,and 50830103)the Opening Foundation of Sichuan University
文摘Novel multifunctional nanoparticles containing a magnetic Fe3O4@SiO2 sphere and a biocompatible block copolymer poly(ethylene glycol)-b-poly(aspartate)(PEG-b-PAsp) were prepared.The silica coated on the superparamagnetic core was able to achieve a magnetic dispersivity,as well as to protect Fe3O4 against oxidation and acid corrosion.The PAsp block was grafted to the surface of Fe3O4@SiO2 nanoparticles by amido bonds,and the PEG block formed the outermost shell.The anticancer agent doxorubicin(DOX) was loaded into the hybrid nanoparticles via an electrostatic interaction between DOX and PAsp.The release rate of DOX could be adjusted by the pH value.