Three-dimensional integrated circuit technology with transistors stacked on top of one an-other in multi-layer silicon film has always been a vision in the future technology direction. While the idea is simple, the te...Three-dimensional integrated circuit technology with transistors stacked on top of one an-other in multi-layer silicon film has always been a vision in the future technology direction. While the idea is simple, the technique to obtain high performance multi-layer transistors is extraordinarily diffi-cult. Not until recently does such technology become feasible. In this paper, the background and vari-ous techniques to form three-dimensional circuits will be reviewed. Recent development of a simple and promising technology to achieve three-dimensional integration using Metal-Induced-Lateral-Crystalliza-tion will be described. Preliminary results of 3D inverters will also be provided to demonstrate the viabil-ity for 3D integration.展开更多
文摘Three-dimensional integrated circuit technology with transistors stacked on top of one an-other in multi-layer silicon film has always been a vision in the future technology direction. While the idea is simple, the technique to obtain high performance multi-layer transistors is extraordinarily diffi-cult. Not until recently does such technology become feasible. In this paper, the background and vari-ous techniques to form three-dimensional circuits will be reviewed. Recent development of a simple and promising technology to achieve three-dimensional integration using Metal-Induced-Lateral-Crystalliza-tion will be described. Preliminary results of 3D inverters will also be provided to demonstrate the viabil-ity for 3D integration.