从齿轮内部存在缺陷这一事实出发,研究不同载荷、不同缺陷位置对齿轮寿命的影响.根据齿轮无损探伤验收标准设定的初始缺陷,应用边界元分析软件FRANC3D(fracture analysis code in 3dimensions)计算了裂纹前沿不同位置处的应力强度因子,...从齿轮内部存在缺陷这一事实出发,研究不同载荷、不同缺陷位置对齿轮寿命的影响.根据齿轮无损探伤验收标准设定的初始缺陷,应用边界元分析软件FRANC3D(fracture analysis code in 3dimensions)计算了裂纹前沿不同位置处的应力强度因子,对齿轮在不同载荷条件下进行裂纹扩展的仿真,得到不同载荷条件下载荷循环次数与裂纹长度关系曲线及齿轮寿命与齿根应力幅值曲线.展开更多
A three-node triangular element fitted to numerical manifold method with continuous nodal stress, called Trig_3-CNS(NMM)element, was recently proposed for linear elastic continuous problems and linear elastic simple c...A three-node triangular element fitted to numerical manifold method with continuous nodal stress, called Trig_3-CNS(NMM)element, was recently proposed for linear elastic continuous problems and linear elastic simple crack problems. The Trig_3-CNS(NMM) element can be considered as a development of both the Trig_3-CNS element and the numerical manifold method(NMM).Inheriting all the advantages of Trig_3-CNS element, calculations using Trig_3-CNS(NMM) element can obtain higher accuracy than Trig_3 element without extra degrees of freedom(DOFs) and yield continuous nodal stress without stress smoothing. Inheriting all the advantages of NMM, Trig_3-CNS(NMM) element can conveniently treat crack problems without deploying conforming mathematical mesh. In this paper,complex problems such as a crucifix crack and a star-shaped crack with many branches are studied to exhibit the advantageous features of the Trig_3-CNS(NMM) element. Numerical results show that the Trig_3-CNS(NMM) element is prominent in modeling complex crack problems.展开更多
文摘从齿轮内部存在缺陷这一事实出发,研究不同载荷、不同缺陷位置对齿轮寿命的影响.根据齿轮无损探伤验收标准设定的初始缺陷,应用边界元分析软件FRANC3D(fracture analysis code in 3dimensions)计算了裂纹前沿不同位置处的应力强度因子,对齿轮在不同载荷条件下进行裂纹扩展的仿真,得到不同载荷条件下载荷循环次数与裂纹长度关系曲线及齿轮寿命与齿根应力幅值曲线.
基金the National Natural Science Foundation of China(Grant Nos 51609240,11572009&51538001)and the National Basic Research Program of China(Grant No 2014CB047100)
文摘A three-node triangular element fitted to numerical manifold method with continuous nodal stress, called Trig_3-CNS(NMM)element, was recently proposed for linear elastic continuous problems and linear elastic simple crack problems. The Trig_3-CNS(NMM) element can be considered as a development of both the Trig_3-CNS element and the numerical manifold method(NMM).Inheriting all the advantages of Trig_3-CNS element, calculations using Trig_3-CNS(NMM) element can obtain higher accuracy than Trig_3 element without extra degrees of freedom(DOFs) and yield continuous nodal stress without stress smoothing. Inheriting all the advantages of NMM, Trig_3-CNS(NMM) element can conveniently treat crack problems without deploying conforming mathematical mesh. In this paper,complex problems such as a crucifix crack and a star-shaped crack with many branches are studied to exhibit the advantageous features of the Trig_3-CNS(NMM) element. Numerical results show that the Trig_3-CNS(NMM) element is prominent in modeling complex crack problems.