期刊文献+

Modeling complex crack problems using the three-node triangular element fitted to numerical manifold method with continuous nodal stress 被引量:6

Modeling complex crack problems using the three-node triangular element fitted to numerical manifold method with continuous nodal stress
原文传递
导出
摘要 A three-node triangular element fitted to numerical manifold method with continuous nodal stress, called Trig_3-CNS(NMM)element, was recently proposed for linear elastic continuous problems and linear elastic simple crack problems. The Trig_3-CNS(NMM) element can be considered as a development of both the Trig_3-CNS element and the numerical manifold method(NMM).Inheriting all the advantages of Trig_3-CNS element, calculations using Trig_3-CNS(NMM) element can obtain higher accuracy than Trig_3 element without extra degrees of freedom(DOFs) and yield continuous nodal stress without stress smoothing. Inheriting all the advantages of NMM, Trig_3-CNS(NMM) element can conveniently treat crack problems without deploying conforming mathematical mesh. In this paper,complex problems such as a crucifix crack and a star-shaped crack with many branches are studied to exhibit the advantageous features of the Trig_3-CNS(NMM) element. Numerical results show that the Trig_3-CNS(NMM) element is prominent in modeling complex crack problems.
出处 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2017年第10期1537-1547,共11页 中国科学(技术科学英文版)
基金 the National Natural Science Foundation of China(Grant Nos 51609240,11572009&51538001) and the National Basic Research Program of China(Grant No 2014CB047100)
关键词 numerical manifold method Trig3-CNS (NMM) element stress intensity factor complex crack problems 数值流形方法 三角形单元 节点应力 裂纹问题 拟合 中枢神经系统 裂缝问题 NMM
  • 相关文献

参考文献4

二级参考文献40

  • 1苏海东,谢小玲,陈琴.高阶数值流形方法在结构静力分析中的应用研究[J].长江科学院院报,2005,22(5):74-77. 被引量:13
  • 2姜清辉,邓书申,周创兵.三维高阶数值流形方法研究[J].岩土力学,2006,27(9):1471-1474. 被引量:19
  • 3Belytschko T, Lu Y Y, Gu L. Element free Galerkin methods[ J]. International Journal for Numerical Methods in Engineering, 1994,37(2) :229-256. 被引量:1
  • 4Calvo B, Martinez M A, Doblare M. On solving large strain hyperelastic problems with the natural element method[ J]. International Journal for Numerical Methods in Engineering, 2005,62(2) : 159- 185. 被引量:1
  • 5Krysl P, Belytschko T. Analysis of thin plates by the element-free Galerkin method[ J]. Computational Mechanics, 1995,17(1/2) :26-35. 被引量:1
  • 6Melenk J M,Babuska I. The partition of unity finite element method:basic theory and applications[ J]. Computer Methods in Applied Mechanics and Engineering, 1996, 139(1/4) :289-314. 被引量:1
  • 7Rajendran S,Zhang B R.A "FE-meshfree" QUAD4 element based on partition of unity[ J]. Computer Methods in Applied Mechanics and Engineering, 2007,197 ( 1/4 ) : 128-147. 被引量:1
  • 8Zhang B R, Rajendran S. "FE-Meshfree" QUAD4 element for free-vibration analysis[ J]. Computer Methods in Applied Mechanics and Engineering ,2008,197(45/48) : 3595-3604. 被引量:1
  • 9Duarte C A, Kim D J, Quaresma D M. Arbitrarily smooth generalized finite element approximation [ J]. Computer Methods in Applied Mechanics and Engineering, 2005,196 ( 1/3 ) :33-56. 被引量:1
  • 10Zienkiewicz O C, Taylor R L. The Finite Element Method[M]. Vol 2,5th Ed. Oxford, UK: Butterworth Heinemann, 2000,124-126. 被引量:1

共引文献24

同被引文献34

引证文献6

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部