针对YOLOv3(you only look once version 3)对中小目标检测效果不理想的问题,提出改进算法DX-YOLO(densely ResneXt with YOLOv3)。首先对YOLOv3的特征提取网络Darknet-53进行改进,使用ResneXt残差模块替换原有残差模块,优化了卷积网络...针对YOLOv3(you only look once version 3)对中小目标检测效果不理想的问题,提出改进算法DX-YOLO(densely ResneXt with YOLOv3)。首先对YOLOv3的特征提取网络Darknet-53进行改进,使用ResneXt残差模块替换原有残差模块,优化了卷积网络结构;受DenseNet的启发,在Darknet-53中引入密集连接,实现了特征重用,提高了提取特征的效率;根据数据集的特点,利用K-means算法对数据集进行维度聚类,获得合适的预选框。在行人车辆数据集Udacity上进行实验,结果表明:DX-YOLO算法与YOLOv3相比,平均准确率(mean average precision,mAP)提升了3.42%;特别地,在中等目标和小目标上的平均精度(average precision,AP)分别提升了2.74%和5.98%。展开更多
为了提高工业自动化水平,对表面缺陷进行有效检测,提出了一种改进的YOLOv3(You Only Look Once)网络检测方法。使用轻量级网络(MobileNet)来代替YOLOv3原有网络中的密集连接网络(Darknet-53),适当减少参数量的提取;加入空洞卷积,提高网...为了提高工业自动化水平,对表面缺陷进行有效检测,提出了一种改进的YOLOv3(You Only Look Once)网络检测方法。使用轻量级网络(MobileNet)来代替YOLOv3原有网络中的密集连接网络(Darknet-53),适当减少参数量的提取;加入空洞卷积,提高网络对小目标缺陷的检测能力;在网络结构的最后一层卷积中加入了Inception结构,进一步减少参数总量并加深网络。改进后的网络在测试集上精准性比原有的YOLOv3网络提高了23.3%,实时性也提高了95.4%,在钢板表面缺陷检测中具有更好的应用前景。展开更多
文摘针对YOLOv3(you only look once version 3)对中小目标检测效果不理想的问题,提出改进算法DX-YOLO(densely ResneXt with YOLOv3)。首先对YOLOv3的特征提取网络Darknet-53进行改进,使用ResneXt残差模块替换原有残差模块,优化了卷积网络结构;受DenseNet的启发,在Darknet-53中引入密集连接,实现了特征重用,提高了提取特征的效率;根据数据集的特点,利用K-means算法对数据集进行维度聚类,获得合适的预选框。在行人车辆数据集Udacity上进行实验,结果表明:DX-YOLO算法与YOLOv3相比,平均准确率(mean average precision,mAP)提升了3.42%;特别地,在中等目标和小目标上的平均精度(average precision,AP)分别提升了2.74%和5.98%。
文摘为了提高工业自动化水平,对表面缺陷进行有效检测,提出了一种改进的YOLOv3(You Only Look Once)网络检测方法。使用轻量级网络(MobileNet)来代替YOLOv3原有网络中的密集连接网络(Darknet-53),适当减少参数量的提取;加入空洞卷积,提高网络对小目标缺陷的检测能力;在网络结构的最后一层卷积中加入了Inception结构,进一步减少参数总量并加深网络。改进后的网络在测试集上精准性比原有的YOLOv3网络提高了23.3%,实时性也提高了95.4%,在钢板表面缺陷检测中具有更好的应用前景。