期刊文献+

航拍图像中绝缘子目标检测的研究 被引量:29

Research on target detection of insulator in aerial image
下载PDF
导出
摘要 使用YOLOv3深度网络模型,针对航拍图像中绝缘子检测的准确性问题进行研究,提出了一种分解聚合算法。为解决目标的错检、漏检等问题,将目标分解成多个存在交集的可变型部件,并对其进行检测。在保证子目标检测精度与速度的前提下,利用各部件之间相交区域的特征及含义,对其进行聚合并重新定义,使检测到的目标区域更准确。由于群体性目标中包含的可变因素过多,原算法无法准确定义,提出的改进方法则可根据必需部件对其进行检测,同时为单独的子目标找出它所隶属的整体,通过多级标签对其进行更深刻意义上的描述。以COCO数据集为例,对比算法改进前后的检测效果。实验结果表明,该方法显著提高了目标检测的准确性,解决了漏检、错检等问题。 In this paper, the depth network model of YOLOv3 is adopted to study the accuracy of insulator detection in aerial photography images, and the decomposition and aggregation algorithm is proposed. In order to solve the problem of wrong check and missing check, the target is decomposed into several intersecting variable parts and its detection is conducted. On the premise of ensuring the detection accuracy and speed of sub-targets, the features and meanings of intersecting areas between components are used to aggregate and redefine them, thus making the detected target area more accurate. The original algorithm cannot define it accurately because there are too many variables in the group objective, the improved method proposed in this paper can detect it according to the required parts, and find out the whole of its membership for the individual sub-targets, and it is described in a more profound sense through multi-level tags. Taking COCO data set as an example, the detection effect is compared before and after the improvement of the algorithm, and the experimental results show that this method can improve the accuracy of target detection and solve the problems of missed detection and wrong detection.
作者 高强 廉启旺 Gao Qiang;Lian Qiwang(Institute of Electrical and Electronic Engineering, North China Electric Power University,Baoding 071000,Hebei, China)
出处 《电测与仪表》 北大核心 2019年第5期119-123,共5页 Electrical Measurement & Instrumentation
关键词 YOLOv3 目标检测 分解 聚合 YOLOv3 target detection decomposition aggregation
  • 相关文献

参考文献8

二级参考文献45

  • 1张翔,肖小玲,徐光祐.模糊支持向量机中隶属度的确定与分析[J].中国图象图形学报,2006,11(8):1188-1192. 被引量:38
  • 2郝允祥,陈暇举,张保洲.光度学[M].北京:北京师范大学出版社,1997. 被引量:6
  • 3张显全,郭明明,唐莹,蒋联源,赵英淞.一种新的几何特征形状描述子[J].计算机工程与应用,2007,43(29):90-92. 被引量:11
  • 4E. B. Saff, A. D. Snider. Fundamentals of complex analysis witil applications to engineering, science, and mathematics[ M]. London: Prentice Hall, 2003. 被引量:1
  • 5Qaddoumi N N,El-Hag A H,Saker Y.Outdoor insulators testing using artificial neural network-based nearfield microwave technique[J].Instrumentation and Measurement,IEEE Transactions on,2014,63(2):260,266. 被引量:1
  • 6Bingfeng Li,Denglu Wu,Yang Cong,et al.A method of insulator detection from video sequence[J].Information Science and Engineering(ISISE),2012 International Symposium on,14-16 Dec.,2012:386,389. 被引量:1
  • 7Qingping Wang,Hongyu Zhao,Weiwei Wu,et al.Algorithm for segmentation based on an improved three-dimensional Otsu's thresholding[C].Computer Science and Network Technology(ICCSNT),2012 2nd International Conference on,29-31 Dec.,2012:1737,1740. 被引量:1
  • 8Mohamed A, Dahl G, I-Iinton G. Acoustic modeling using deep belief networks[ J ]. IEEE Transactions on Audio, Speech and Language Processing, 2012, 20(1) : 14-22. 被引量:1
  • 9Hanlin Goh, Nicolas Thome, Matthieu Cord. Biasing restricted bolt- zmann machines to manipulate latent selectivity and sparsity [ C ]// NIPS workshop on deep learning and unsuperdsed feature learning. 2010. 被引量:1
  • 10Luo Heng, Shen Ruimin, Niu Changyong, et al. Sparse group re- stricted boltzmann machines [ C ]// Proceedings of the National Con- ference on Artificial Intelligence. San Francisco: AAAI, 2011: 429-434. 被引量:1

共引文献136

同被引文献315

引证文献29

二级引证文献243

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部